1 / 80

Dane INFORMACYJNE

Dane INFORMACYJNE. Nazwa szkoły: Zespół Szkół im. Karola Marcinkowskiego w Ludomach ID grupy: 98/33_MF_G2 Kompetencja: MATEMATYKA I FIZYKA Temat projektowy: HISTORIA LICZBY Semestr/rok szkolny: semestr 3/ rok szkolny 2010/2011. Cele projektu. Ogólne:

dillan
Télécharger la présentation

Dane INFORMACYJNE

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Dane INFORMACYJNE • Nazwa szkoły: • Zespół Szkół im. Karola Marcinkowskiego w Ludomach • ID grupy: • 98/33_MF_G2 • Kompetencja: • MATEMATYKA I FIZYKA • Temat projektowy: • HISTORIA LICZBY • Semestr/rok szkolny: • semestr 3/ rok szkolny 2010/2011

  2. Cele projektu • Ogólne: • kształcenie umiejętności samodzielnego korzystania z różnych źródeł informacji, • gromadzenie, selekcjonowanie i przetwarzanie zdobytych informacji, • doskonalenie umiejętności prezentacji zebranych materiałów, • rozwijanie własnych zainteresowań, samokształcenie, • wyrabianie odpowiedzialności za pracę własną i całej grupy, • kształcenie umiejętności radzenia sobie z emocjami , • godnego przyjmowania niepowodzeń i ich właściwej interpretacji. • W zakresie rozwinięcia umiejętności pracy w grupach: • układania harmonogramów działań, • planowania i rozliczania wspólnych działań, • przekonywania członków grupy do proponowanych rozwiązań w celu wspólnej realizacji planowanych działań, • przewidywanie trudności w realizacji projektu i radzenia sobie z nimi.

  3. Cele projektu C.D. • Rozwój wiedzy • Uporządkowanie i utrwalenie wiadomości o liczbach. • Poznanie różnych systemów zapisu licz. • Wykorzystywanie umiejętności rachunkowych przy rozwiązywaniu problemów z różnych dziedzin. • Poznawanie i wykorzystanie liczb w różnorodnych kontekstach. • Rozwijanie umiejętności posługiwania się liczbami.

  4. Cele projektu C.D. • Rozwój umiejętności • Rozwijanie umiejętności rachunkowych. Używanie kalkulatora przy wykonywaniu obliczeń oraz przy sprawdzaniu wyników szacowania. • Rozwój postaw • Rozwijanie ciekawości poznawczej i umiejętności badawczych. • Rozwijanie sprawności umysłowej oraz osobistych zainteresowań uczniów. • Rozwijanie samodzielności uczniów oraz umiejętności organizacji pracy własnej. • Kształtowanie i rozwijanie umiejętności współpracy w zespole i podejmowania decyzji grupowych. • Kształtowanie umiejętności planowania działań. • Kształtowanie postawy systematyczności i odpowiedzialności za przydzielone zadania

  5. Wprowadzenie do tematu • Bez cyfr trudno wyobrazić sobie matematykę. Wielu zapewne matematyka kojarzy się wyłącznie z cyframi, w przeciwieństwie do dyscyplin humanistycznych, operujących przede wszystkim słowem. Życie codzienne w dużym stopniu również zdominowane jest przez cyfry – gdy patrzymy na zegarek, płacimy za zakupy, zapisujemy datę itd. Cyfry stały się czymś tak powszechnym i oczywistym, że mogłoby się wydawać, iż takie są od zawsze, niezmienne. Nic bardziej mylnego. Ich zapis zmieniał się na przestrzeni wieków, a dodatkowo w różnych kulturach obowiązywały różne systemy cyfrowe. Cyfry używane współcześnie zaczęły zdobywać przewagę dopiero w epoce nowożytnej. • W tej prezentacji postaramy się pokazać, jak zmieniał się sposób zapisu liczb, jak ludzie w różnych krajach i epokach ułatwiali sobie liczenie.

  6. POJĘCIE LICZBY Liczba – pojęcie abstrakcyjne, jedno z najczęściej używanych w matematyce. Określenie „liczba” bez żadnego przymiotnika jest nieścisłe, gdy matematycy nie definiują „liczb”, lecz „liczby naturalne”, „liczby całkowite”, itp. Poszczególne rodzaje liczb są definiowane za pomocą aksjomatów lub konstruowane z bardziej podstawowych pojęć, takich jak zbiór, czy typy liczb prostsze od konstruowanego.

  7. Przykład definiowania liczb naturalnych • Liczby naturalne : całkowite nieujemne • Własności (porównywanie liczb, nierówności) • Jeżeli k<m i m<n to k<n • Dla dowolnych liczb naturalnych n i m zachodzi dokładnie jedna z możliwości : n<m albo m<n albo n=m • 0 to najmniejsza liczba naturalna • Nie ma największej liczby naturalnej

  8. Zapisywanie liczb

  9. Pierwsze obliczenia pierwotnych Człowiek potrafił liczyć już w epoce pierwotnej, choć nie znał jeszcze cyfr. Wyniki swoich obliczeń zapisywał na kościach, nacinając na nich kreski. Za najstarszy zapis liczby uważa się 55 nacięć na kości wilka sprzed 30 tysięcy lat. Kość tę znaleziono w Czechach w 1937r. W latach 60 ubiegłego wieku w Afryce znaleziono kości z wyrytymi na nich karbami liczące ponad 25 000 lat. Na jednej z nich karby układają się w liczby 11, 13, 17, 19. Są to liczby pierwsze. Wymieniona kość stanowi drugie najstarsze na Ziemi znalezisko matematyczne i można ją sobie obejrzeć w muzeum brukselskim.

  10. Pierwsze obliczenia pierwotnych • Prymitywne plemiona Afryki, Ameryki Południowej i Australii do tej pory zachowały sposób obliczeń ludzi pierwotnych. • 1 (żywa istota, człowiek) • 2 (dwie płcie, symetria w cieleczłowieka, życie i śmierć, para) • 3 - dużo, wiele(tyle, ile włosów na głowie, para i 1) • 4 - ?

  11. Pierwsze obliczenia pierwotnych ŻABA ŻABY DRZEWO LAS CZŁOWIEK TŁUM

  12. Próby zapisu obliczeń • W tym celu ludzie z różnych stron świata używali muszli, paciorków, twardych owoców, kości, patyków, zębów słonia, orzechów kokosowych, kulek glinianych, ziaren kakao. Układali te przedmioty w stosy lub rzędy w ilości odpowiedniej ilości istot lub przedmiotów, które chcieli policzyć. Znaczyli też kreski na piasku lub robili węzełki na sznurkach, przesuwali muszle lub paciorki nawleczone na wzór różańca. Tak powstało kipu, chińskie pismo węzełkowe, niemiecki sposób liczenia za pomocą węzełków na workach.

  13. Liczenie na palcach • Do liczenia zaczęto również wykorzystywać ciało: dotyka się kolejno palców prawej ręki, począwszy od małego, potem nadgarstka, łokcia, ramienia, ucha i oka prawego, następnie nosa i ust, potem oka, ucha, ramienia, łokcia i nadgarstka lewego i kończy się na małym palcu lewej ręki. W ten sposób dochodzi się do liczby 22. Jeśli to nie wystarcza, dodaje się brodawki piersi, biodra, części płciowe, potem kolana, kostki i palce u nóg, najpierw z lewej a potem z prawej strony. To pozwala dojść do 41.

  14. Ręka jako maszyna do liczenia • Cud ruchomości i prawności - ręka ludzka - jest najstarszym i najbardziej rozpowszechnionym środkiem pomocniczym do liczenia i rachowania używanym przez rodzaj ludzki w ciągu wieków. Polega on na przypisaniu każdemu palcowi liczby całkowitej według naturalnego porządku tych liczb poczynając od jedności. To przypisanie odbywa się czasem przez podnoszenie kolejnych palców, jeśli zaczyna się od pozycji zgiętej, czasami przez opuszczanie jednego po drugim, jeśli na początku są wyciągnięte. Istnieją na świecie różne warianty tej techniki palcowej. Można np. przypisywać liczby palcom od prawej strony do lewej, lub na odwrót. Można zaczynać od kciuka lub małego palca, lub od wskazującego, jak czynią muzułmanie w Afryce Północnej.

  15. Quipu • Przyrząd zwany quipo albo quipu (od słowa znaczącego w języku Inków "węzeł"), składał się ze sznurka około dwóch stóp długości i z przywiązanych do niego cieńszych sznureczków barwnych, połączonych w kilka grup i umieszczonych w równych odstępach za pomocą różnego rodzaju węzłów. • Te quipa spełniały wielorakie funkcje dzięki temu, że kolory cieńszych sznurków, ilość węzełków i ich położenie względem siebie, wielkość i rozkład ich skupień miały dokładnie określone znaczenie. Można było na quipu wyrazić pewne elementy liturgii oraz dane chronologiczne i statystyczne. Spełniały one rolę kalendarza i służyły do przekazywania informacji. Kolor sznureczka mógł umownie odpowiadać konkretnemu przedmiotowi lub abstrakcyjnemu pojęciu. • Te sznureczki z węzełkami starannie przechowywano, żeby można było pamiętać rezultaty przeliczeń.

  16. Metoda nacięć • Służyła głównie reprezentacji i utrwaleniu liczb, była także jakby prototypem przyrządu do rachowania. Liczne nacięcia znajdowane na skalistych ścianach grot prehistorycznych obok sylwetek zwierząt nie budzą wątpliwości, że chodzi tu o liczenie. Nacięcia dotrwały do naszych czasów. Jeszcze kilka pokoleń wstecz pasterze alpejscy, węgierscy, celtyccy, toskańscy i dalmatyńscy znaczyli pogłowie swoich zwierząt żłobiąc odpowiednią ilość kresek, nacięć lub krzyżyków na patykach lub deszczułkach. Podatek zwany taille , niegdyś pobierany przez królów i panów feudalnych we Francji od rzezimieszków i chłopów pańszczyźnianych, nazywał się tak dlatego, że poborcy zaznaczali na deszczułkach wpłaty podatników. • Na początku zeszłego stulecia we Francji, w Szwajcarii, w Niemczech i w krajach skandynawskich ponacinane patyki zastępowały księgi rachunkowe i zobowiązania pisemne i służyły na rynku do zapisywania rachunków.

  17. abak • U podstaw abaków i liczydeł leżą kamyki. Człowiek wynalazł abaki i liczydła szukając praktycznego sposobu wykonywania coraz bardziej złożonych rachunków. • Kamyczek = calculus ( z łac.) Stąd dziś kalkulować, czyli liczyć. • U narodów zachodnich abaki miały kształt tablic lub deseczek podzielonych kilkoma liniami poziomymi lub pionowymi na rzędy lub kolumny odpowiadające różnym rzędom numeracji, np. dziesiętnej. Żeby przedstawić jakieś liczby i wykonać na nich pewne działanie, umieszczano na abaku kamyki lub żetony, z których każdy oznaczał jednostkę.

  18. Wynalazek cyfr • Dzięki wynalezieniu pisma oraz cyfr można było w sposób zupełnie ujednolicony pisać dowolne liczby oraz umożliwiało to każdemu wykonywanie rachunków bez liczydła. Odkrycie to nie pojawiło się nagle. Ma ono swój początek ponad 5000 lat temu w niektórych społeczeństwach wysoko rozwiniętych i silnie ekspansywnych, gdzie trzeba było notować operacje ekonomiczne zbyt liczne i różnorodne, by je powierzać pamięci ludzkiej. Tam właśnie zrodził się pomysł przedstawiania liczb znakami graficznymi - wynaleziono cyfry. 0 1 2 3 4 5 6 7 8 9

  19. System numeryczny w Elamii i Sumerii • Sumerów posługiwali się kamykami różnej wielkości, były to gliniane żetony o umówionej wartości. Zamykano je w kulistym naczyniu otoczonym pieczęciami. Taki system miał dla owych ludzi taką samą moc prawną jak dla nas najbardziej prawomocne zobowiązanie pisemne. A więc nie można było wyprzeć się długu lub zmienić jego wartości: wierzyciel posiada naczynie do rachuby należące do dłużnika, naznaczone jego pieczęcią i zawierające określoną liczbę "calculi". System ten nie był bardzo wygodny, gdyż trzeba za każdym razem stłuc naczynie, gdy się chce obliczyć jego wartość. Rachmistrzowie sumeryjscy i elamiccy, około roku 3300 p.n.e., wpadli na pomysł, żeby kamyki zamknięte w naczyniach do rachuby oznaczać symbolami, którymi były rozmaite znaki różnej wielkości i kształtu wyżłobione na zewnątrz na ściankach naczyń. Te znaki to w rzeczywistości znaki numeryczne, ponieważ każdy z nich jest symbolem graficznym przedstawiającym liczbę. Stanowią one prawdziwy system pisania liczb. W ten oto sposób narodziły się pierwsze w historii cyfry, jako element pisma klinowego

  20. System grecki • Grecki system liczbowy- jest systemem addytywnym używającym liter greckiego alfabetu do reprezentacji liczb. Obecnie w Grecji jego zastosowanie ogranicza się do reprezentacji liczebników porządkowych oraz w sytuacjach analogicznych do stosowania rzymskiego zapisu w kulturze zachodniej.

  21. Grecy rozwinęli w starożytności wspaniałą kulturę, którą podziwiamy do dzisiaj. Uczeni greccy zajmowali się różnymi dziedzinami wiedzy, znacznie ją wzbogacając. Matematycy odkrywali własności liczb i figur. Twierdzenia słynnych uczonych greckich są do dzisiaj prawdziwe i stosowane.

  22. Liczebniki Greckie • Grecy wymyślili różne systemy liczbowe. Tutaj omówimy liczebniki alfabetyczne. Grecy byli jedną z pierwszych kultur, która zastosowała w praktyce system zapisu słów oparty na alfabecie (słowo alfabet pochodzi przecież od greckich liter - alfa i beta). Liczebniki greckie oznaczane były kolejnymi literkami alfabetu.

  23. Taki system pozwala bezproblemowo zapisywać liczby od 1 do 999. Z większymi wartościami Grecy poradzili sobie podobnie jak później Rzymianie, stosując cyfry młodsze od 1 do 9 z dodatkowym znakiem "iota", który umieszczano przed liczebnikiem jako indeks górny lub dolny.

  24. W jaki sposób jednak starożytni Grecy zapisywali liczby większe od 9999? Oparli system zapisu takich liczb na miriadzie, która miała wartość 10.000. Symbolem miriady był znam M, ponad którym umieszczano małymi literkami liczbę od 1 do 9999 oznaczającą konieczność pomnożenia tej liczby przez miriadę, czyli 10000. Oto odpowiednie przykłady:

  25. System rzymski • Znane nam dzisiaj liczby rzymskie zdają się na pierwszy rzut oka po prostu literami alfabetu łacińskiego: • Ale to nie są pierwotne postacie rzymskich znaków liczbowych. Dawne ich formy nie miały nic wspólnego z literami. • Np. cyfra 50 zmieniła swój kształt, zanim stała się z literą L

  26. Rzymianie do zapisywania liczb poza siedmioma, które przetrwały do dziś, używali dodatkowo ligatur ↁ oznaczający 5000, oraz ↂ oznaczający 10000. Dodatkowo stosowano notację pozwalającą zapisywać większe liczby. Wpisanie liczby pomiędzy dwa znaki | oznaczało liczbę stukrotnie większą, a umieszczenie poziomej kreski nad liczbą oznaczało mnożenie przez 1000.

  27. Liczba zero • Liczba zero nie posiada własnego znaku w systemie rzymskim, gdyż "nic" nie było powszechnie uważane za wartość liczby. Wartość 0,5 jest reprezentowana przez znak S (łac. Semis - pół) oraz ł (skreślone l).

  28. Odejmowanie w liczbach rzymskich • Odejmowanie przy zapisywaniu cyframi rzymskimi jak przy zapisie IV czy IX albo XC nie było popularne w zapisie stosowanym przez Rzymian, a upowszechniło się dopiero w średniowieczu. Obecnie przyjęte jest użycie odejmowania w zapisie liczb: IX = 9 XL = 40 XC = 90 CM = 900

  29. Dzisiejsze użycie liczb rzymskich • Do dziś jest jednak używany zwyczajowo do zapisywania liczb w pewnych szczególnych przypadkach. Na przykład w Polsce zapisuje się cyframi rzymskimi: • numery liceów (ale nie szkół podstawowych i gimnazjów), • wieki, • tomy dzieł itd.

  30. Przykłady liczb zapisanych za pomocą znaków rzymskich XC 90 XIX 19 XVI 16 XXXI 31 CMX 910 LXIV 64 LV 55 CL 150 XL 40 CD 400 DCXXX 630 LXX 70 MCL 1150 MMCCII 2202 XCIX 99 CCCXL 340

  31. Sposób odczytu • Cyfry jednakowe są dodawane, cyfry mniejsze stojące przed większymi są odejmowane od nich, cyfry mniejsze stojące za większymi są do nich dodawane. MCLXIV = 1000(M) + 100(C) + 50(L) + 10(X) + 5(V) – 1(I) = 1164

  32. PROSTA NOTACJA I WYNALAZEK ZERA Żeby napisać liczbę 3577, trzeba było użyć aż 22 znaków, ponieważ trzeba było napisać 3 razy cyfrę oznaczającą tysiąc, 5 razy cyfrę oznaczającą sto, 7 razy cyfrę dziesięć i 7 razy cyfrę jeden. Dlatego pisarzy egipscy starali się jak najbardziej uprościć budowę i pisownię cyfr i tak doszli do notacji zwanej hieratyczną . Nowe kształty cyfr ledwo już przypominały swoje prototypy.

  33. system babiloński • System babiloński-Babilońskich znaków używano w Mezopotamii około 5000 lat temu. Zachowały się do naszych czasów na glinianych tabliczkach. Wśród tych tablic uczeni znaleźli sporo tablic, na których wypisana jest cała wiedza matematyczna Babilonii. Babilończycy pisali pismem klinowym. Liter klinowych było dużo, ale znaków cyfrowych było niewiele.

  34. System Babiloński System babiloński może wydawać się skomplikowany, jednak w rzeczywistości Babilończycy potrzebowali tylko dwóch symboli - dla oznaczenia jedności i dziesiątek. Znak oznaczał jedności, znak oznaczał dziesiątki. Ich cyfry były zbudowane właśnie z tych dwóch znaków.

  35. System Babiloński- liczby od 1 do10 1 2 3 4 5 6 7 8 9 10

  36. System egipski – informacje ogólne Egipski system zapisywania liczb opierał się na liczbie 10 jako na podstawie, lecz nie był to system pozycyjny. Do oznaczania kolejnych potęg liczby 10 istniały specjalne znaki - hieroglify. Znak dla jedynki przedstawiał tyczkę do mierzenia, zapisywano zaś go jako pionową kreskę. Kreskami takimi oznaczano liczby od 1 do 9. Znak dla 10 przypominał podkowę. Znak dla 100 przedstawiał zwinięty liść palmy, zwiniętą linię do mierzenia albo - jak niektórzy twierdzą - laskę kapłańską. Znak dla 1000 przedstawiał kwiat lotosu, symbol Nilu.

  37. System egipski cd. Znakiem 10 000 jest wskazujący palec, a 100 000 - żaba. Liczba stu tysięcy w ich pojęciu była czymś tak wielkim, jak ilość żab w błotach Nilu po jego wylewach. Znak dla 1000000 przedstawia postać z podniesionymi rękoma. Jest to najprawdopodobniej obraz boga podtrzymującego sklepienie niebieskie jako symbol "wszystkiego". Liczbę 10 000 000 oznaczano podkreślając koło.

  38. Hieroglify w systemie egipskim

  39. Hieroglify w systemie egipskim cd.

  40. Przykłady obliczeń w systemie egipskim + = + = + III III III = III III III

  41. Ciekawostki • Za najstarszy do dzisiaj zachowany dokument z dziedziny matematyki uważa się Papirus Ahmesa. Są w nim zapiski, które świadczą o tym, że już w starożytności Egipcjanie posługiwali się ułamkami. • Liczby zapisuje się w następujący sposób, np. 4622 II

  42. system Majów • Starożytni Majowie jako pierwsi na Ziemi odkryli dwie fundamentalne dla matematyki idee - system pozycyjny oraz koncepcję zera. Wynalezienie systemu pozycyjnego przypisuje się kulturze hinduskiej, lecz z badań historycznych wynika jasno, iż Majowie znali i stosowali system pozycyjny przynajmniej 300 lat wcześniej niż Hindusi

  43. Informacje podstawowe • Podstawą tego systemu była liczba 20. Dlaczego? W Ameryce Południowej nie było potrzeby noszenia obuwia. Podczas liczenia mieli więc do dyspozycji 20 palców, co wpłynęło na wybór podstawy liczenia. • Był to też system przewyższający inne systemy ludów starożytnych, gdyż nie było żadnych ograniczeń do wielkości liczb.

  44. Zapis liczb • W systemie Majów były tylko trzy znaki: • to zero • to jednostka • to piątka • Za pomocą tych trzech znaków konstruowano liczby.

  45. Wartość liczb obliczamy mnożąc cyfry od dołu do góry przez kolejne potęgi liczby 20 i sumując je.

  46. Informacje dodatkowe • Do dziś nie wiemy w jaki sposób Majowie zapisywali działania • Dziś istnieje niewiele pism Majów, więc nasza wiedza o nich jest wciąż ograniczona

  47. system Indyjski

  48. Cyfry Indyjskie… Większość pozycyjnych dziesiętnych systemów liczbowych na świecie pochodzi z Indii, gdzie narodziła się koncepcja numerologii pozycyjnej. Cyfry indyjskie znane są w kulturze zachodniej jako cyfry arabskie, gdyż Arabowie rozprzestrzenili je w Europie w średniowieczu.

  49. Do III wieku n.e w Indiach posługiwano się cyframi karoszti, od VI wieku n.e. używano cyfr brahni. Obok zapisu cyfrowego stosowano słowny system np. Zero – oznaczano słowami: puste, niebo, dziura Jedność –oznaczano przedmiotami występującymi tylko w liczbie pojedyńczej np. Księżyc, ziemia Dwójkę – oznaczano słowami: oczy, bliźnięta Czwórkę – oznaczano słowami: oceany, strony świata. Wraz z cyframi Brahni powstały nowoczesne cyfry indyjskie dewanagari stosowane w dziesiętnym układzie pozycyjnym. Tak, więc cyfry 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 zostały wynalezione przez Hindusów i dlatego nazwane cyframi indyjskimi. W Polsce do dnia dzisiejszego cyfry indyjskie nazywamy cyframi arabskimi, ponieważ cyfry te przejęliśmy od Arabów. Hindusi jako pierwsi sformułowali reguły działań arytmetycznych oparte na dziesiętnym układzie pozycyjnym. Dodawanie i odejmowanie liczb wykonywano od prawej do lewej strony, jak i na odwrót, natomiast wymyślili około dziesięciu sposobów mnożenia. Od VII w n.e. posługiwali się nie tylko liczbami dodatnimi zwanymi dhama albo sva ale również liczbami ujemnymi rina albo kszaja tłumaczeniu

More Related