1 / 53

Polymer Chemistry

POLYMER CHEMISTRY . Polymer Chemistry. 저 자 : Malcolm P. Stevens     Professor of chemistry at the university of Hartfort OXFORD UNIVERSITY PRESS 3rd Ed.(1999). POLYMER CHEMISTRY . CONTENTS. PART Ⅰ POLYMER STRUCTURE AND PROPERTIES. Basic principles

etta
Télécharger la présentation

Polymer Chemistry

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. POLYMER CHEMISTRY Polymer Chemistry 저 자 : Malcolm P. Stevens     Professor of chemistry at the university of Hartfort OXFORD UNIVERSITY PRESS3rd Ed.(1999)

  2. POLYMER CHEMISTRY CONTENTS PART Ⅰ POLYMER STRUCTURE AND PROPERTIES • Basic principles • Molecular weight and polymer solutions • Chemical structure and polymer morphology • Chemical structure and polymer properties • Evaluation, characterization, and analysis of polymers

  3. POLYMER CHEMISTRY CONTENTS PART Ⅱ VINYL POLYMERS • 6. Free radical polymerization • Ionic polymerization • Vinyl polymerization with complex coordination catalysts • Reactions of vinyl polymers

  4. POLYMER CHEMISTRY CONTENTS PART Ⅲ NONVINYL POLYMERS • 10. Step-reaction and ring-opening polymerization • 11. Polyethers, polysulfides, and related polymers • Polyesters • Polyamides and related polymers • Phenol-, urea-, and melamine-formaldehyde polymers • Heterocyclic polymers • Inorganic and partially inorganic polymers • Miscellaneous organic polymers • Natural polymers

  5. POLYMER CHEMISTRY Chapter 1. Basic principles 1.1 Introduction and Historical Development 1.2 Definitions 1.3 Polymerization Processes 1.4 Step-reaction Polymerization 1.5 Chain-reaction Polymerization 1.6 Step-reaction Addition and Chain-reaction Condensation 1.7 Nomenclature 1.8 Industrial Polymers 1.9 Polymer Recycling

  6. A. Development of civilization Stone age → Bronze age → Iron age → Polymer age B. Application of polymeric materials o PE milk bottles o Polyamide bulletproof vests o Polyurethane artificial heart o Fluorinated phosphazene elastomer for arctic environments POLYMER CHEMISTRY 1.1 Introduction and Historical Development

  7. POLYMER CHEMISTRY C. The purpose of this book 1. Property difference between polymer and low molecular weight compound 2. Chemistry of polymer synthesis 3. Chemistry of polymer modification

  8. POLYMER CHEMISTRY D. Development of polymer chemistry • 1833년 : Berzelius, the first use of terminology, polymer • 1839년 : Synthesis of polystyrene • 1860s  : Poly(ethylene glycol), Poly(ethylene succinate) • 1900s : Leo Baekeland, synthesis of phenol formaldehyde resin • 1920s : Hermann staudinger •     Structure of polymer(long-chain molecules), Novel Prize(1953년) • 1939년 : W.H. Carothers, Nylon synthesis (Du Pont) • 1963년 : Ziegler-Natta, stereoregular polymerization • 1974년 : Paul Flory, polymer solution property • 1984년 : Bruce Merrifield, solid-phase protein process

  9. Monomer Polymer POLYMER CHEMISTRY E. Examples of monomers and polymers

  10. monomer : one unit • oligomer : few • polymer : many (poly – many, mer – part) • telechelic polymer : polymer containing reactive end group •       (tele = far, chele = claw) • telechelic oligomer : oligomer containing reactive end group • macromer(=macro monomer) : monomer containing long chain POLYMER CHEMISTRY 1.2 Definitions A. Acoording to the amount of repeating units

  11. B. DP : Degree of polymerization The total number of repeating units contained terminal group C. The kinds of applied monomers • One kind : Homopolymer • Two kinds : Copolymer • Three kinds : Terpolymer POLYMER CHEMISTRY 1.2 Definitions

  12. POLYMER CHEMISTRY D. Types of copolymer • Homopolymer : -A-A-A-A-A-A-A-A- • Random copolymer :    -A-B-B-A-B-A-A-B- • Alternating copolymer : -A-B-A-B-A-B-A-B- • Block copolymer :      -A-A-A-A-B-B-B-B- • Graft copolymer :     -A-A-A-A-A-A-A-A- B-B-B-B-B-

  13. linear   (b) branch (c) network POLYMER CHEMISTRY E. Representation of polymer types

  14. (a) star polymer (b) comb polymer (c)ladder polymer POLYMER CHEMISTRY F. Representation of polymer architectures (d) semi- ladder (or stepladder) polymer

  15. (f) polycatenane (e) polyrotaxane (g) dendrimer POLYMER CHEMISTRY F. Representation of polymer architectures

  16. POLYMER CHEMISTRY G. Thermoplastic and thermoset (reaction to temperature) • Thermoplastic : Linear or branched polymer • Thermoset   : Network polymer

  17. 1.3 Polymerization Processes • A. Classification of polymers to be suggested by Carothers • Addition polymers : repeating units and monomers are same • Condensation polymers : repeating units and monomers • are not  equal, to be split out small molecule POLYMER CHEMISTRY

  18. (1.7) (1.8) POLYMER CHEMISTRY Other examples • Polyester from lactone (1.7) & from ω-hydroxycarboxylic acid (1.8)

  19. (1.9) (1.10) POLYMER CHEMISTRY Other examples 2. Polyamide from lactam (1.9), and from ω-aminocarboxylicacid (1.10)

  20. (1.11) (1.12) POLYMER CHEMISTRY Other examples 3. Polyurethane from diisocyanate and dialcohol(1.11) and from diamine and bischloroformate(1.12):

  21. (1.13) (1.14) POLYMER CHEMISTRY Other examples 4. Hydrocarbon polymer from ethylene (1.13), and from α,ω-dibromide (1.14)

  22. Chain growth polymerization : Addition polymerization         molecular weights increase successively,  one by one monomer Ring-opening polymerization may be either step or chain reaction POLYMER CHEMISTRY 1.3 Polymerization Processes B. Modern classification of polymerization according to    polymerization mechanism Step growth polymerization : Polymers build up stepwise

  23. 1. One having both reactive functional groups in one molecule (1.8) (1.10) POLYMER CHEMISTRY 1.4  Step-reaction Polymerization A. Monomer to have difunctional group

  24. (1.11) (1.12) POLYMER CHEMISTRY 2. Other having two difunctional monomers

  25. (1.3) (1.4) POLYMER CHEMISTRY B. Reaction : Condensation reaction using functional group Example - Polyesterification

  26. ( NO: number of molecules N : total molecules after a given reaction period. NO – N : The amount reacted P : The reaction conversion ) NO N P = NO Or N = NO(1 P) ( DP is the average number of repeating units of all molecules present) DP = NO/N 1 DP = 1 - P For example At 98% conversion 1 DP = 1- 0.98 POLYMER CHEMISTRY C. Carothers equation

  27. (A) Unreacted monomer (B) 50% reacted, DP = 1.3 (C) 75% reacted, DP = 1.7 (D) 100% reacted, DP = 3

  28. A. Monomer : vinyl monomer • χCH2=CH2 • B. Reaction : Addition reaction initiated by active species • C. Mechanism : • Initiation •        R + CH2=CH2 → RCH2CH2 • Propagation •        RCH2CH2 + CH2=CH2 → RCH2CH2CH2CH2 . . . . POLYMER CHEMISTRY 1.5 Chain-reaction Polymerization

  29. Step Reaction Chain Reaction Growth occurs by successive addition of monomer units to limited number of growing chains DP can be very high Monomer consumed relatively slowly, but molecular weight increases rapidly Initiation and propagation mechanisms different Usually chain-terminating step involved Polymerizaion rate increases initially as initiator units generated; remains relatively constant until monomer depleted Growth occurs throughout matrix by reaction between monomers, oligomers, and polymers DPa low to moderate Monomer consumed rapidly while molecular weight increases slowly No initiator needed; same reaction mechanism throughout No termination step; end groups still reactive Polymerization rate decreases steadily as functional groups consumed aDP, average degree of polymerization. TABLE 1.1 Comparison of Step-Reaction and Chain-Reaction Polymerization

  30. 1.6 Step-reaction Addition and Chain-reaction Condensation A. Step-reaction Addition. (1.15) POLYMER CHEMISTRY

  31. POLYMER CHEMISTRY 1.6 Step-reaction Addition and Chain-reaction Condensation B. Chain-reaction Condensation (1.16)

  32. POLYMER CHEMISTRY 1.7 Nomenclature A. Types of Nomenclature a. Source name : to be based on names of corresponding monomer Polyethylene, Poly(vinyl chloride), Poly(ethylene oxide) b. IUPAC name : to be based on CRU, systematic name Poly(methylene), Poly(1-chloroethylene), Poly(oxyethylene) c. Functional group name : Acoording to name of functional group in the polymer backbone Polyamide, Polyester

  33. POLYMER CHEMISTRY 1.7 Nomenclature d. Trade name : The commercial names by manufacturer Teflon, Nylon e. Abbreviation name : PVC, PET f. Complex and Network polymer : Phenol-formaldehyde polymer g. Vinyl polymer : Polyolefin

  34. POLYMER CHEMISTRY 1.7.1 Vinyl polymers A. Vinyl polymers a. Source name : Polystyrene, Poly(acrylic acid),                   Poly(α-methyl styrene), Poly(1-pentene)   b. IUPAC name : Poly(1-phenylethylene), Poly(1-carboxylatoethylene)             Poly(1-methyl-1-phenylethylene), Poly(1-propylethylene) PolystyrenePoly(acrylic acid) Poly(α-methylstyrene)  Poly(1-pentene)

  35. POLYMER CHEMISTRY 1.7.1 Vinyl polymers B. Diene monomers 1,2-addition 1,4-addition Source name : 1,2-Poly(1,3-butadiene)    1,4-Poly(1,3-butadiene) IUPAC name : Poly(1-vinylethylene)      Poly(1-butene-1,4-diyl)   cf) Table 1.2

  36. Systematic Poly[styrene-co-(methyl methacrylate)] Poly[styrene-alt-(methyl methacrylate)] Polystyrene-block-poly(methyl methacrylate) Polystyrene-graft-poly(methyl methacrylate) Concise Copoly(styrene/methyl methacrylate)  Alt-copoly(styrene/methyl methacrylate) Block-copoly(styrene/methyl methacrylate) Graft-copoly(styrene/methyl methacrylate) POLYMER CHEMISTRY 1.7.2 Vinyl copolymer

  37. 1-oxopropane-1,3-diyl oxy oxy ethylene oxy terephthaloyl POLYMER CHEMISTRY 1.7.3 Nonvinyl Polymers

  38. POLYMER CHEMISTRY * Representative Nomenclature of Nonvinyl Polymers Monomer          Polymer            Source or          IUPAC name structure          repeating unit       Common Name Poly(ethylene oxide) Poly(oxyethylene) Poly(ethylene glycol) Poly(oxyethylene) Poly(hexamethylene   Poly(iminohexane- sebacamide) or Nylon6,10  1,6-diyliminosebacoyl) cf) Table 1.3

  39. a. Poly(ethylene terephthalate-co-ethylene isophthalate) b. Poly[(6-aminohexanoic acid)-co-(11-aminoundecanoic acid)] POLYMER CHEMISTRY 1.7.4 Nonvinyl copolymers

  40. α-Hydro-ω-hydroxypoly(oxyethylene) POLYMER CHEMISTRY 1.7.5 End Group

  41. POLYMER CHEMISTRY 1.7.6 Abbreviations PVC Poly(vinyl chloride) HDPE High-density polyethylene LDPE Low-density polyethylene PETPoly(ethylene terephthalate)

  42. a. The world consumption of synthetic polymers    : 150 million metric tons per year. 1) Plastics : 56% 2) Fibers  : 18% 3) Synthetic rubber : 11% 4) Coating and Adhesives : 15% b.Styrene-butadiene copolymer Synthetic rubber,   PET  Fiber (polyester) Latex paint           Plastic (bottle) POLYMER CHEMISTRY 1.8 Industrial Polymers

  43. POLYMER CHEMISTRY 1.8.1 Plastics 1) Commodity plastics     LDPE, HDPE, PP, PVC, PS   cf) Table 1.4 2) Engineering plastics     Acetal, Polyamide, Polyamideimide, Polyarylate,     Polybenzimidazole, etc.   cf) Table 1.5 3) Thermosetting plastics  Phenol-formaldehyde, Urea-formaldehyde, Unsaturated polyester, Epoxy, Melamine-formaldehyde    cf) Table 1.6 4) Functional plastics     Optics, Biomaterial, etc.

  44. TABLE 1.4 Commodity Plastic Type Major Uses Abbreviation LDPE Packaging film, wire and cable insulation, toys, flexible bottles housewares, coatings Low-density polyethylene HDPE Bottles, drums, pipe, conduit, sheet, film, wire and cable insulation High-density Polyethylene PP Automobile and appliance parts, furniture, cordage, webbing, carpeting, film packaging Polypropylene Construction, rigid pipe, flooring, wire and cable insulation, film and sheet PVC Poly(vinyl chloride) PS Polystyrene Packaging (foam and film), foam insulation appliances, housewares, toys POLYMER CHEMISTRY

  45. TABLE 1.5 Principal Engineering Plastics Type Abbreviation Chapter Where Discussed C 11 13 13 12 17 12 12 11 11 13 11 11 11 POM PAI PBI PC PEEK PEI PI PPO PPS Acetala Polyamideb Polyamideimide Polyarylate Polybenzimidazole Poltcarbonate Polyeseterc Polyetheretherketone Polyetherimide Polyimide Poly(phenylene oxide) Poly(phenylene sulfide) Polysulfoned POLYMER CHEMISTRY

  46. TABLE 1.6 Principal Thermosetting Plastics Chapter Where Discussed Type Abbreviation Typical Uses Phenol-formaldehyde Urea-formaldehyde Unsaturated polyester Epoxy Melamine-formaldehyde PF UF UP - MF Electrical and electronic equipment, automobile parts, utensil handles, plywood adhesives, particle board binder Similar to PF polymer; also treatment of textiles, coatings Construction, automobile parts, boat hulls, marine accessories, corrosion-resistant ducting, pipe, tanks, etc., business equipment Protective coatings, adhesives, electrical and electronics applications, industrial flooring highway paving materials, composites Similar to UF polymers; decorative panels, counter and table tops, dinnerware 14 14 12 11 14

  47. POLYMER CHEMISTRY 1.8.2 Fibers • 1) Cellulosic : • Acetate rayon, Viscose rayon • 2) Noncellulosic : • Polyester, Nylon(Nylon6,6, Nylon6, etc) • Olefin • (PP, Copolymer(PVC 85%+PAN and others 15%; vinyon)) • 3) Acrylic : • Contain at least 80% acrylonitrile •     (PAN 80% + PVC and others 20%)        

  48. POLYMER CHEMISTRY 1.8.3 Rubber (Elastomers) 1) Natural rubber : cis-polyisoprene 2) Synthetic rubber : Styrene-butadiene, Polybutadiene,    Ethylene-propylene(EPDM), Polychloroprene, Polyisoprene,    Nitrile, Butyl, Silicone, Urethane 3) Thermoplastic elastomer : Styrene-butadiene block copolymer    (SB or SBS)

  49. TABLE 1.7 Principal Synthetic Fibers Type Cellulosic Acetate rayon Viscose rayon Noncellulosic Polyester Nylon Olefin Acrylic Description Cellulose acetate Regenerated cellulose Principally poly(ethylene terephthalate) Includes nylon 66, nylon 6, and a variety of other aliphatic and aromatic polyamides Includes polypropylene and copolymers of vinyl chloride, with lesser amounts of acrylonitrile, vinyl acetate, or vinylidene chloride (copolymers consisting of more than 85% vinyl chloride are called vinyon fibers) Contain at least 80% acrylonitrile; included are modacrylic fibers comprising acrylonitrile and about 20% vinyl chloride or vinylidene chloride

  50. POLYMER CHEMISTRY • 1.8.4 Coating and Adhesives • 1) Coating : • Lacquer, Vanishes, Paint (Oil or Latex), Latex • 2) Adhesives : • Solvent based, Hot melt, Pressure sensitive, etc. •     Acrylate, Epoxy, Urethane, Cyanoacrylate

More Related