1 / 25

Hidden Markov Models

Hidden Markov Models. Two learning scenarios. Estimation when the “right answer” is known Examples: GIVEN: a genomic region x = x 1 …x 1,000,000 where we have good (experimental) annotations of the CpG islands

gusty
Télécharger la présentation

Hidden Markov Models

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Hidden Markov Models

  2. Two learning scenarios • Estimation when the “right answer” is known Examples: GIVEN: a genomic region x = x1…x1,000,000 where we have good (experimental) annotations of the CpG islands GIVEN: the casino player allows us to observe him one evening, as he changes dice and produces 10,000 rolls • Estimation when the “right answer” is unknown Examples: GIVEN: the porcupine genome; we don’t know how frequent are the CpG islands there, neither do we know their composition GIVEN: 10,000 rolls of the casino player, but we don’t see when he changes dice QUESTION: Update the parameters  of the model to maximize P(x|)

  3. 1. When the right answer is known Given x = x1…xN for which the true  = 1…N is known, Define: Akl = # times kl transition occurs in  Ek(b) = # times state k in  emits b in x We can show that the maximum likelihood parameters  are: Akl Ek(b) akl = ––––– ek(b) = ––––––– i Akic Ek(c)

  4. 2. When the right answer is unknown We don’t know the true Akl, Ek(b) Idea: • We estimate our “best guess” on what Akl, Ek(b) are • We update the parameters of the model, based on our guess • We repeat

  5. 2. When the right answer is unknown Starting with our best guess of a model M, parameters : Given x = x1…xN for which the true  = 1…N is unknown, We can get to a provably more likely parameter set  Principle: EXPECTATION MAXIMIZATION • Estimate Akl, Ek(b) in the training data • Update  according to Akl, Ek(b) • Repeat 1 & 2, until convergence

  6. Estimating new parameters To estimate Akl: At each position i of sequence x, Find probability transition kl is used: P(i = k, i+1 = l | x) = [1/P(x)]  P(i = k, i+1 = l, x1…xN) = Q/P(x) where Q = P(x1…xi, i = k, i+1 = l, xi+1…xN) = = P(i+1 = l, xi+1…xN | i = k) P(x1…xi, i = k) = = P(i+1 = l, xi+1xi+2…xN | i = k) fk(i) = = P(xi+2…xN | i+1 = l) P(xi+1 | i+1 = l) P(i+1 = l | i = k) fk(i) = = bl(i+1) el(xi+1) akl fk(i) fk(i) akl el(xi+1) bl(i+1) So: P(i = k, i+1 = l | x, ) = –––––––––––––––––– P(x | )

  7. Estimating new parameters • So, fk(i) akl el(xi+1) bl(i+1) Akl = i P(i = k, i+1 = l | x, ) = i ––––––––––––––––– P(x | ) • Similarly, Ek(b) = [1/P(x)]{i | xi = b} fk(i) bk(i) fk(i) bl(i+1) akl k l xi+2………xN x1………xi-1 el(xi) xi xi+1

  8. The Baum-Welch Algorithm Initialization: Pick the best-guess for model parameters (or arbitrary) Iteration: • Forward • Backward • Calculate Akl, Ek(b) • Calculate new model parameters akl, ek(b) • Calculate new log-likelihood P(x | ) GUARANTEED TO BE HIGHER BY EXPECTATION-MAXIMIZATION Until P(x | ) does not change much

  9. The Baum-Welch Algorithm Time Complexity: # iterations  O(K2N) • Guaranteed to increase the log likelihood of the model P( | x) = P(x, ) / P(x) = P(x | ) / ( P(x) P() ) • Not guaranteed to find globally best parameters Converges to local optimum, depending on initial conditions • Too many parameters / too large model: Overtraining

  10. Alternative: Viterbi Training Initialization: Same Iteration: • Perform Viterbi, to find * • Calculate Akl, Ek(b) according to * + pseudocounts • Calculate the new parameters akl, ek(b) Until convergence Notes: • Convergence is guaranteed – Why? • Does not maximize P(x | ) • In general, worse performance than Baum-Welch

  11. Variants of HMMs

  12. Higher-order HMMs The Genetic Code 3 nucleotides make 1 amino acid Statistical dependencies in triplets Question: Recognize protein-coding segments with a HMM

  13. One way to model protein regions P(xixi+1xi+2 | xi-1xixi+1) Every state of the HMM emits 3 nucleotides Transition probabilities: Probability of one triplet, given previous triplet P(i, | i-1) Emission probabilities: P(xixi-1xi-2 | i ) = 1/0 P(xi-1xi-2xi-3 | i-1 ) = 1/0 AAC AAA AAT … TTT …

  14. A more elegant way Every state of the HMM emits 1 nucleotide Transition probabilities: Probability of one triplet, given previous 3 triplets P(i, | i-1, i-2, i-3) Emission probabilities: P(xi | i) Algorithms extend with small modifications C A T G

  15. Modeling the Duration of States 1-p Length distribution of region X: E[lX] = 1/(1-p) • Geometric distribution, with mean 1/(1-p) This is a significant disadvantage of HMMs Several solutions exist for modeling different length distributions X Y p q 1-q

  16. Sol’n 1: Chain several states p 1-p X Y X X q 1-q Disadvantage: Still very inflexible lX = C + geometric with mean 1/(1-p)

  17. Sol’n 2: Negative binomial distribution Duration in X: m turns, where • During first m – 1 turns, exactly n – 1 arrows to next state are followed • During mth turn, an arrow to next state is followed m – 1 m – 1 P(lX = m) = n – 1 (1 – p)n-1+1p(m-1)-(n-1) = n – 1 (1 – p)npm-n p p p 1 – p 1 – p 1 – p Y X X X ……

  18. Example: genes in prokaryotes • EasyGene: Prokaryotic gene-finder Larsen TS, Krogh A • Negative binomial with n = 3

  19. Solution 3: Duration modeling Upon entering a state: • Choose duration d, according to probability distribution • Generate d letters according to emission probs • Take a transition to next state according to transition probs Disadvantage: Increase in complexity: Time: O(D2) Space: O(D) where D = maximum duration of state X

  20. Connection Between Alignment and HMMs

  21. A state model for alignment M (+1,+1) Alignments correspond 1-to-1 with sequences of states M, I, J I (+1, 0) J (0, +1) -AGGCTATCACCTGACCTCCAGGCCGA--TGCCC--- TAG-CTATCAC--GACCGC-GGTCGATTTGCCCGACC IMMJMMMMMMMJJMMMMMMJMMMMMMMIIMMMMMIII

  22. Let’s score the transitions s(xi, yj) M (+1,+1) Alignments correspond 1-to-1 with sequences of states M, I, J s(xi, yj) s(xi, yj) -d -d I (+1, 0) J (0, +1) -e -e -e -e -AGGCTATCACCTGACCTCCAGGCCGA--TGCCC--- TAG-CTATCAC--GACCGC-GGTCGATTTGCCCGACC IMMJMMMMMMMJJMMMMMMJMMMMMMMIIMMMMMIII

  23. How do we find optimal alignment according to this model? Dynamic Programming: M(i, j): Optimal alignment of x1…xi to y1…yjending in M I(i, j): Optimal alignment of x1…xi to y1…yj ending in I J(i, j): Optimal alignment of x1…xi to y1…yjending in J The score is additive, therefore we can apply DP recurrence formulas

  24. Needleman Wunsch with affine gaps – state version Initialization: M(0,0) = 0; M(i,0) = M(0,j) = -, for i, j > 0 I(i,0) = d + ie; J(0,j) = d + je Iteration: M(i – 1, j – 1) M(i, j) = s(xi, yj) + max I(i – 1, j – 1) J(i – 1, j – 1) e + I(i – 1, j) I(i, j) = max e + J(i, j – 1) d + M(i – 1, j – 1) e + I(i – 1, j) J(i, j) = max e + J(i, j – 1) d + M(i – 1, j – 1) Termination: Optimal alignment given by max { M(m, n), I(m, n), J(m, n) }

  25. Probabilistic interpretation of an alignment An alignment is a hypothesis that the two sequences are related by evolution Goal: Produce the most likely alignment Assert the likelihood that the sequences are indeed related

More Related