1 / 24

Test Data Generation for LRU Cache-Memory Testing

Test Data Generation for LRU Cache-Memory Testing. Evgeny Kornikhin Moscow State University Institute for System Programming of RAS. testing by test programs. add r1,r2,r3 sub r4, r1, r2 lw r5, r1, 0 lui r2, r1, r4. Y/N. assembly program ( test program ). microprocessor.

hlang
Télécharger la présentation

Test Data Generation for LRU Cache-Memory Testing

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Test Data Generation for LRU Cache-Memory Testing Evgeny KornikhinMoscow State UniversityInstitute for System Programming of RAS

  2. testing by test programs add r1,r2,r3sub r4, r1, r2lw r5, r1, 0lui r2, r1, r4 Y/N assembly program ( test program ) microprocessor

  3. test program generation model of microprocessor coverage oftest situations and dependencies (r-w, r-r) add r1,r2,r3 @ overflow lw r4, r3, c @ hit test templates (logical form) mov r2, 0xFF add r1,r2,r3 lw r4, r3, 0 test programs (executable form)

  4. R4000 add load ... args test situations cache rd rs rt overflow regular test program generation model of microprocessor coverage oftest situations and dependencies (r-w, r-r) add r1,r2,r3 @ overflow lw r4, r3, c @ hit test templates (logical form) mov r2, 0xFF add r1,r2,r3 lw r4, r3, 0 test programs (executable form)

  5. R4000 add load ... args test situations cache rd rs rt overflow regular test program generation model of microprocessor coverage oftest situations and dependencies (r-w, r-r) add r1,r2,r3 @ overflow lw r4, r3, c @ hit test templates (logical form) mov r2, 0xFF add r1,r2,r3 lw r4, r3, 0 test programs add specific initialization of microprocessor (registers and cache) (executable form)

  6. cache-hit cache model tag0' value0' tag0'' value0'' set №0 LOAD val, addr (val := memory[addr]) t' v' t'' v'' set №s

  7. cache-hit cache model tag0' value0' tag0'' value0'' set №0 LOAD val, addr (val := memory[addr]) addr t = t' ort = t'' t s t = t'' tag set t' v' t'' v'' set №s

  8. cache-miss cache model tag0' value0' tag0'' value0'' set №0 LOAD val, addr (val := memory[addr]) nextlevel addr t != t' andt != t'' t s tag set t' v' t'' v'' set №s evicted

  9. LOAD x, y @ hitSTORE u, z @ missLOAD z, y @ hit problem again initial state of cacheand registers = ?

  10. key idea test template add ...load …sub …div … LOAD x, y @ hit constraint variable ? ? ? ? y  {a,b,c} ? ? variable u  {a,b,c} cache model x = z

  11. fully associative cache z x z x y ... N y {x,y,z,...} - current state

  12. cache-hit hit(t) z t x z x y ... N y t {x,y,z...}

  13. cache-miss miss(t) z t x z x y ... N y t  {x,y,z...} newcache={x,y,z...}{t}\{?}

  14. cache-miss miss(t)→u z t x z x y ... N y t  {x,y,z...} u{x,y,z...} newcache={x,y,z...}{t}\{u}

  15. lru(u) hit x1 u = x2 hit x2 {x3, x5} = L\{u} miss x3->x4 hit x5 L miss t->u counter(u)=min

  16. lru(u) hit x1 u = x1 hit x2 {x2, x3, x5} = L\{u} miss x3->x4 hit x5 L miss t->u there are another cases

  17. example a initialstate: b y{a,b,g} g z{a,b,g} LOAD x, y @ hit z0{a,b,g} →z0 STORE u, z @ miss z0=b {a,b,g}\{z0}={g,y} LOAD z, y @ hit y{a,b,g,z}\{z0} N = 3

  18. example z{a,b,g} y = a y{a,b,g} z{a,b,g} y=a=0 z0{a,b,g} z0=b {a,b,g}\{z0}={g,y} b=1 g=2 z=3 y{a,b,g,z}\{z0}

  19. common cache x x R(x) y R(y) y z z R(z)

  20. common cache hit(t) t L miss(t)→u u Lt L new cache=L{t}\{u}R(t) = R(u)lru(u)

  21. lru(u) hit x1 hit x2 u = x2 {x3, x5}∩R(u) = (L\{u})∩R(u) miss x3→x4 hit x5 miss t→u

  22. example x1,x2  {a1,a2,b1,b2,c1,c2} x3  {a1,a2,b1,b2,c1,c2} R(x3) = R(y3) x4  {a1,...,c2,x3}\{y3} x5  {a1,...,c2,x3}\{y3} y3 = c2 {y3} = ({a1,...,c2}\{x1,x2, y3})∩R(y3) y5 = x2 {y5} = ({a1...c2,x3}\{y3,y5, x3,x4})∩R(y5)

  23. SAT modulo theories (bit-vectors) Yices solver (assert (or (= x a) (= x b)(= x c))) x  {a,b,c} y  {a,b,c} (assert (and (/= y a) (/= y b)(/= y c))) x = z (check) SMT

  24. http://tesla-project.googlecode.com http://hardware.ispras.ru kornevgen@gmail.com contacts

More Related