1 / 21

Multiplexers

Multiplexers. Lecture L6.6 Section 6.2. Multiplexers. A Digital Switch A 2-to-1 MUX A 4-to-1 MUX A Quad 2-to-1 MUX The ABEL when…then Statement TTL Multiplexer. 4 x 1. MUX. s1. s0. Y. 0 0 C0 0 1 C1 1 0 C2 1 1 C3. Multiplexers. C0. C1. Y. C2. C3. s1. s0.

Télécharger la présentation

Multiplexers

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Multiplexers Lecture L6.6 Section 6.2

  2. Multiplexers • A Digital Switch • A 2-to-1 MUX • A 4-to-1 MUX • A Quad 2-to-1 MUX • The ABEL when…then Statement • TTL Multiplexer

  3. 4 x 1 MUX s1 s0 Y 0 0 C0 0 1 C1 1 0 C2 1 1 C3 Multiplexers C0 C1 Y C2 C3 s1 s0

  4. 4 x 1 MUX Multiplexers s1 s0 Y C0 0 0 C0 0 1 C1 1 0 C2 1 1 C3 C1 Y C2 C3 s1 s0 A multiplexer is a digital switch 0 0

  5. 4 x 1 MUX Multiplexers s1 s0 Y C0 0 0 C0 0 1 C1 1 0 C2 1 1 C3 C1 Y C2 C3 s1 s0 0 1

  6. 4 x 1 MUX Multiplexers s1 s0 Y C0 0 0 C0 0 1 C1 1 0 C2 1 1 C3 C1 Y C2 C3 s1 s0 1 0

  7. 4 x 1 MUX Multiplexers s1 s0 Y C0 0 0 C0 0 1 C1 1 0 C2 1 1 C3 C1 Y C2 C3 s1 s0 1 1

  8. A 2 x 1 MUX Z = A & !s0 # B & s0

  9. A 4 x 1 MUX A = !s0 & C0 # s0 & C1 B = !s0 & C2 # s0 & C3 Z = !s1 & A # s1 & B Z = !s1 & (!s0 & C0 # s0 & C1) # s1 & (!s0 & C2 # s0 & C3)

  10. A 4 x 1 MUX Z = !s1 & (!s0 & C0 # s0 & C1) # s1 & (!s0 & C2 # s0 & C3) Z = !s1 & !s0 & C0 # !s1 & s0 & C1 # s1 & !s0 & C2 # s1 & s0 & C3

  11. S Y 0 A 1 B ProblemHow would you make aQuad 2-to-1 MUX? Quad 2-to-1 MUX [A3..A0] [Y3..Y0] [B3..B0] S

  12. mux.abl MODULE Mux TITLE 'Quad 2 to 1 Multiplexer, A. Student, 6/21/02' DECLARATIONS " INPUT PINS “ " OUTPUT PINS “ EQUATIONS END Mux Quad 2-to-1 MUX [A3..0] [Y3..0] [B3..0] S

  13. Switch S6(1..4) A input vector (4 bits) Switch S7(1..4) B input vector (4 bits) Push Button Select Line mux.abl MODULE Mux TITLE 'Quad 2 to 1 Multiplexer' DECLARATIONS " INPUT PINS " A3..A0 PIN 11,7,6,5; A = [A3..A0]; B3..B0 PIN 4,3,2,1; B = [B3..B0]; S PIN 10;

  14. Defines output Output LEDs 9 – 12 Output Vector Y (4 bits) Logic Equation for the Multiplexer mux.abl (cont’d) " OUTPUT PINS " Y3..Y0 PIN 35,36,37,39 ISTYPE 'com'; Y = [Y3..Y0]; EQUATIONS Y = A & !S # B & S; END Mux

  15. Mux Using Behavioral ABEL Z = !s2 & !s1 & !s0 & C0 # !s2 & !s1 & s0 & C1 # !s2 & s1 & !s0 & C2 # !s2 & s1 & s0 & C3 # s2 & !s1 & !s0 & C4 # s2 & !s1 & s0 & C5 # s2 & s1 & !s0 & C6 # s2 & s1 & s0 & C7

  16. MODULE mux81 TITLE '8 to 1 Multiplexer' DECLARATIONS " INPUT PINS " C7..C0 PIN 11,7,6,5,4,3,2,1; C = [C7..C0]; s2..s0 PIN 70,71,72; S = [s2..s0]; " OUTPUT PINS " Z PIN 35 ISTYPE 'com'; EQUATIONS when (S == 0) then Z = C0; when (S == 1) then Z = C1; when (S == 2) then Z = C2; when (S == 3) then Z = C3; when (S == 4) then Z = C4; when (S == 5) then Z = C5; when (S == 6) then Z = C6; when (S == 7) then Z = C7; @radix 16; test_vectors ([C,S] -> Z) [6,0] -> 0; [7,1] -> 1; [9,2] -> 0; [15,3] -> 0; [36,4] -> 1; [47,5] -> 0; [29,6] -> 0; [0A5,7] -> 1; END mux81.abl

  17. MODULE mux81 TITLE '8 to 1 Multiplexer' DECLARATIONS " INPUT PINS " C7..C0 PIN 11,7,6,5,4,3,2,1; C = [C7..C0]; s2..s0 PIN 70,71,72; S = [s2..s0]; " OUTPUT PINS " Z PIN 35 ISTYPE 'com';

  18. EQUATIONS when (S == 0) then Z = C0; when (S == 1) then Z = C1; when (S == 2) then Z = C2; when (S == 3) then Z = C3; when (S == 4) then Z = C4; when (S == 5) then Z = C5; when (S == 6) then Z = C6; when (S == 7) then Z = C7;

  19. @radix 16; test_vectors ([C,S] -> Z) [6,0] -> 0; [7,1] -> 1; [9,2] -> 0; [15,3] -> 0; [36,4] -> 1; [47,5] -> 0; [29,6] -> 0; [0A5,7] -> 1; END

  20. Blif Simulation Report 8 to 1 Multiplexer C C C C C C C C s s s 7 6 5 4 3 2 1 0 2 1 0 Z V0001 0 0 0 0 0 1 1 0 0 0 0 L V0002 0 0 0 0 0 1 1 1 0 0 1 H V0003 0 0 0 0 1 0 0 1 0 1 0 L V0004 0 0 0 1 0 1 0 1 0 1 1 L V0005 0 0 1 1 0 1 1 0 1 0 0 H V0006 0 1 0 0 0 1 1 1 1 0 1 L V0007 0 0 1 0 1 0 0 1 1 1 0 L V0008 1 0 1 0 0 1 0 1 1 1 1 H 8 out of 8 vectors passed.

  21. 1 16 1G Vcc 2 15 B 2G 3 14 1C3 A 4 13 1C2 2C3 5 12 1C1 2C2 6 11 1C0 2C1 7 10 1Y 2C0 8 9 GND 2Y 74LS153 TTL Multiplexer B A C0 C1 C2 C3 G Y X X X X X X 1 0 0 0 0 X X X 0 0 0 0 1 X X X 0 1 0 1 X 0 X X 0 0 0 1 X 1 X X 0 1 1 0 X X 0 X 0 0 1 0 X X 1 X 0 1 1 1 X X X 0 0 0 1 1 X X X 1 0 1 Dual 4-to-1-line multiplexer

More Related