# Half Life

Télécharger la présentation

## Half Life

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
##### Presentation Transcript

1. Half Life

2. Half Life • Half-life is the time it takes for half of the atoms of a sample to decay. • For example: • A student was testing a sample of 8 grams of radioactive protactinium. Protactinium has a a half life of 1 minute and decays into actinium. • After 1 minute there would be 4 g of protactinium (and 4 g of actinium). • After 2 minutes there would be 2 g of protactinium remaining (and now 6g of actinium). • After 3 minutes there would be 1 g of protactinium remaining (and now 7g of actinium)

3. 1 half life later… 1 half life later… 1 half life later… 2 1 8 4 8 8 8 8 Dating materials using half-lives Question: Uranium decays into lead. The half life of uranium is 4,000,000 years. A sample of radioactive rock contains 7 times as much lead as it does uranium. Calculate the age of the sample. Answer: The sample was originally completely uranium… …of the sample was uranium Now only 4/8 of the uranium remains – the other 4/8 is lead Now only 2/8 of uranium remains – the other 6/8 is lead Now only 1/8 of uranium remains – the other 7/8 is lead So it must have taken 3 half lives for the sample to decay until only 1/8 remained (which means that there is 7 times as much lead). Each half life is 4,000,000 years so the sample is 12,000,000 years old.

4. Potassium decays into argon. The half life of potassium is 1.3 billion years. A sample of rock from Mars is found to contain three argon atoms for every atom of potassium. How old is the rock? The rock must be 2 half lives old – 2.6 billion years

5. Radioactive substances emit radiation from the nuclei of their atoms all the time. The half-life of a radioactive isotope is Either the time it takes for the number of nuclei of the isotope in a sample to halve or the time it takes for the count rate from a sample containing the isotope to fall to half its initial level.

8. How do materials affect radiation?

9. How do magnetic fields effect radiation?

10. What is alpha (α) radiation? 2 neutrons, 2 protons Description Note:– An alpha particle is the same as a helium nucleus +2 Electric charge 4 Relative atomic mass Stopped by paper or a few centimetres of air Penetrating power Strongly ionizing Ionizing effect Effect of magnetic/ electric field Weakly deflected

11. What is beta (β) radiation? High energy electron Description -1 Electric charge 1/1860 Relative atomic mass Stopped by a few millimetres of aluminium Penetrating power Weakly ionizing Ionizing effect Effect of magnetic/ electric field Strongly deflected

12. Gamma () radiation High energy electromagnetic radiation Description 0 Electric charge 0 Relative atomic mass Stopped by several centimetres of lead or several metres of concrete Penetrating power Very weakly ionizing Ionizing effect Effect of magnetic/ electric field Not deflected

13. Types of radiation and penetrating power

14. Types of radiation and range in air

16. How can radiation detect a fire? smoke particle α α Smoke alarms contain a weak source of alpha radiation. The alpha particles ionize the air. If there is smoke present, it interacts with the ions produced by the alpha particles and ionization is reduced. This means that less current is flowing through the air, which causes the alarm to sound.

17. How is radiation used in making paper?

18. How can radiation find leaks in pipes?

19. welded metal pipe welding flaws photographic film How can radiation detect cracks? Gamma rays can also be used to detect cracks after an object has been welded. Gamma rays are like X-rays. If a gamma source is placed on one side of the welded metal, and a photographic film on the other side, any flaws will show up on the film like an X-ray.

20. High Level nuclear waste Microbes can be killed using gamma radiation

21. Increasing dose tumor healthy brain tissue view through the head Gamma rays can be used to treat brain tumors skull