1 / 7

Design Example

Design Example. The 10” TH. wall system shown in the figure below is to be checked for a service gravity load of 3 Kips/ft and a lateral load of 25 Kips, acting in plane to the wall. The lintel bearing is as per SBC 07.

Télécharger la présentation

Design Example

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Design Example • The 10” TH. wall system shown in the figure below is to be checked for a service gravity load of 3 Kips/ft and a lateral load of 25 Kips, acting in plane to the wall. • The lintel bearing is as per SBC 07. • The masonry unit consist of 1500 psi solid concrete blocks with type M1 cement - sand mortar. 15 ft 5 ft 10 ft 10 ft 7 ft

  2. Analysis (Masonry Frame Properties) • W1: • Cross-Section Area = 10” x (15’x12) = 1800 sq.in. • Inertia = 10” x (15’x12)^3 / 12 = 4860000 in4. • Weight = 0.144 x (1800 / 144) x 10” = 18 Kips • Load from slab = 3 x 15’ = 45 Kips • W2: • Cross-Section Area = 10” x (10’x12) = 1200 sq.in. • Inertia = 10” x (10’x12)^3 / 12 = 1440000 in4. • Weight = 0.144 x (1200 / 144) x 10” = 12 Kips • Load from slab = 3 x 10’ = 30 Kips • Beam: • Cross-Section Area = 10” x (3’x12) = 360 sq.in. • Inertia = 10” x (3’x12)^3 / 12 = 38880 in4. • Weight = 0.144 x (360 / 144) = 0.36 Kips / ft 45 kip 30 kip 3 + 0.36 Kips /ft 25 Kips 10 ft W1 W2 5 ft

  3. Analysis Results Bending Moment (K.ft) Shear Force (K) Axial Force (K)

  4. Wall 1 Section 9.6.6.1 (Table 9-b) • Compressive stress: • P/A = (45+24.7) / 1800 = 0.0387 Ksi or 38.7 psi • Basic compressive stress = 0.96 MPa or 139.23 psi • Slenderness ratio = H/W = (10x12)/10 = 12 • ks = 0.84 • Area of element = 1800/144 = 12.5 sq. ft (>2.5 sq. ft) • ka = 1 • Assuming height of a unit as 6 in & 10 in width: height to width ratio = 6/10 = 0.6 (<0.75) • kp = 1 • Allowable compressive stress = ks kakp x Basic compressive Stress 0.84 x 1 x 1x 139.23 = 116.9 psi (OK) • Flexural Stresses: • P/A + My/I = 0.0387 + (199x12)(7.5x12)/4860000 = 0.0809 Ksi or 80.9 psi • P/A - My/I = 0.0387 - (199x12)(7.5x12)/4860000 = -0.0035 Ksi or 3.5 psi • Allowable compressive stress = 116.9 psi (OK) • Allowable tensile stress = 20 psi (OK) • Shear Stresses: • V/A = 19.7 / 1800 = 0.0109 Ksi or 10.9 psi • Allowable stress = fs = 0.1+fd/6 = 0.1 + (38.7x0.0068)/6 = 0.1155 MPa or 16.75 psi (OK) Section 9.6.6.1.1 (Table 9-b) Section 9.6.6.1.2 (Table 9-b) Section 9.6.6.1.3 (Table 9-b) Section 9.6.6.2 Section 9.6.6.3

  5. Wall 2 Section 9.6.6.1 (Table 9-b) • Compressive stress: • P/A = (30+22.1) / 1200 = 0.0434 Ksi or 43.4 psi • Basic compressive stress = 0.96 MPa or 139.23 psi • Slenderness ratio = H/W = (10x12)/10 = 12 • ks = 0.84 • Area of element = 1200/144 = 8.33 sq. ft (>2.5 sq. ft) • ka = 1 • Assuming height of a unit as 6 in & 10 in width: height to width ratio = 6/10 = 0.6 (<0.75) • kp = 1 • Allowable compressive stress = ks kakp x Basic compressive Stress = 0.84 x 1 x 1x 139.23 = 116.9 psi (OK) • Flexural Stresses: • P/A + My/I = 0.0434 + (42.4x12)(5x12)/1440000 = 0.0646 Ksi or 64.6 psi • P/A - My/I = 0.0434 - (42.4x12)(5x12)/1440000 = -0.0222 Ksi or 22.8 psi • Allowable compressive stress = 116.9 psi (OK) • Allowable tensile stress = 20 psi (OK) (No Tensile Stresses) • Shear Stresses: • V/A = 5.3 / 1200 = 0.0044 Ksi or 4.4 psi • Allowable stress = fs = 0.1+fd/6 = 0.1 + (18.4x0.0068)/6 = 0.120 MPa or 17.4 psi (OK) Section 9.6.6.1.1 (Table 9-b) Section 9.6.6.1.2 (Table 9-b) Section 9.6.6.1.3 (Table 9-b) Section 9.6.6.2 Section 9.6.6.3

  6. Beam Section 9.6.6.1 (Table 9-b) • Compressive stress: • P/A = 5.3 / 360 = 0.0147 Ksi or 14.7 psi • Basic compressive stress = 0.96 MPa or 139.23 psi • Slenderness ratio = H/W = (5x12)/10 = 6 • ks= 1 • Area of element = 360 /144 = 2.5 sq. ft (=2.5 sq. ft) • ka = 1 • Assuming height of a unit as 6 in & 10 in width: height to width ratio = 6/10 = 0.6 (<0.75) • kp = 1 • Allowable compressive stress = ks ka kp x Basic compressive Stress =1 x 1 x 1x 139.23 = 139.23 psi (OK) • Flexural Stresses: • My/I = (10.6x12)(1.5x12)/38880 = 0.0588 Ksi or 58.2 psi • Allowable compressive stress = 116.9 psi (OK) • Allowable tensile stress = 20 psi (Not OK) (Provide reinforcement) • Shear Stresses: • V/A = 6.7 / 360 = 0.0186 Ksi or 18.6 psi • Allowable stress = fs = 0.1+fd/6 = 0.1 + (14.7x0.0068)/6 = 0.116 MPa or 16.82 psi (Not OK) (Inc. Section) Section 9.6.6.1.1 (Table 9-b) Section 9.6.6.1.2 (Table 9-b) Section 9.6.6.1.3 (Table 9-b) Section 9.6.6.2 Section 9.6.6.3

  7. Bearing Stress Check (Lintel) • Bearing length = 4 in or 1/10th of span • (5x12)/10 = 6 in (Take 6 in) • Bearing load = (3 + 0.36) x 5 / 2 = 8.4 Kips • Bearing area = 10 x 6 = 60 sq. in • P/A = 8.4/60 = 0.14 Ksi or 140 psi • Allowable Compressive stress = 139.23 psi (Not OK) • Bearing area with 30° inclination. = 10 x (6+6sin30)= 90 sq.in • P/A = 8.4/90 = 0.0933 Ksi or 93.3 psi • Allowable Compressive stress = 139.23 psi (OK) Section 9.6 Section 9.6

More Related