1 / 11

CLASE 16

CLASE 16. POTENCIACIÓN DE NÚMEROS COMPLEJOS EN FORMA TRIGONOMÉTRICA. Recuerda que:. Los números complejos en forma trigonométrica se expresan. z=  (cos  + i sen  ). z=  cis . :.  . cos (  +  ) + i sen (  +  ). cos (  –  ) + i sen (  –  ). Recuerda que:.

Télécharger la présentation

CLASE 16

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CLASE 16

  2. POTENCIACIÓN DE NÚMEROS COMPLEJOS EN FORMA TRIGONOMÉTRICA

  3. Recuerda que: Los números complejos en forma trigonométrica se expresan z= (cos+i sen) z= cis :

  4.  cos(+)+i sen(+) cos(–)+i sen(–) Recuerda que: z=(cos+i sen) y=(cos+isen) Multiplicación . Z .Y= . División Z:Y=

  5. Efectúa: i 2 1 2 i i = (0,9)2+ 2 . 0,9 . + 2 1 2 1 2 0,9 + Ejemplo 1 = 0,81+ 0,9 . i + 0,25(–1) –0,25 = 0,56+ 0,9 i .

  6. Si z = (cos+i sen) es un número complejo y n, se cumple: zn = n(cos n+i sen n) Teorema de Moivre :

  7. Notación abreviada zn= n(cos n+i sen n) zn= nci s n .

  8. Ejemplo Calcula znsi: z= 0,2(cos 23o+ i sen23o) n = 3 z3= (0,2)3(cos 3.23o + i sen 3.23o) z3= (0,008)(cos 69o + i sen 69o) z3= 0,0029+ 0,0075 i .

  9. z5 = 1282 cis 315o ESTUDIO INDIVIDUAL Calcula zn si: a) z = 3 cis 26o n= 6 z6 = 729 cis 156o . b) z = –2 + 2i n= 5

  10. Calcula znsi: =12+(–1)2 =2 : z = 1 – i n = 4 a = 1 b = – 1 tan  = – 1 tan  = 1 =45o Afijo (1;–1)  =315o Cuarto cuadrante: 360o–= 360o–45o=315o

  11. z4= (2)4(cos 4·315o + i sen 4·315o) z4= (2)2(cos 12600 + isen 12600) z4= 4 (cos 1800 + isen 1800) z4= 4 (–1 + 0) z4= –4 .

More Related