250 likes | 374 Vues
This presentation delves into the fundamental aspects of dark matter (DM) including its unresolved nature and theories surrounding its existence. Key topics include principles and methodologies for both direct and indirect detection of DM, the role of supersymmetry with candidates like neutralinos and gravitinos, and the importance of complementarity in accelerator physics (LHC, ILC). The talk also discusses dark matter evidences from various experiments and proposes future directions to explore DM parameter spaces, with insights on astrophysical implications and constraints.
E N D
N. Bernal, P. Binetruy, D. Cerdeno, E. Dudas, A. Falkowski, A. Goudelis, O. Lebedev, C. Munoz, E. Nezri, S. Pokorski, A. Romagnoni Dark Matter: Why, Where, What, How? Yann Mambrini Laboratoire de Physique Théorique Orsay, Université Paris XI Krakow, January 6th 2010
Overview I) The DM puzzle II) Direct Detection : principle, experiment and prediction III) Indirect detection : principle, experiment and prediction IV) Two SUSY candidates : neutralino and gravitino V) Complementarity with accelerator physics (LHC, ILC) VI) Extra U(1) candidate and sommerfeld effect VII) Conclusions and Perspectives
Galactic Scale CMB (WMAP) SUSY : neutralino, gravitino.. (Jungman) KK modes (Extra Dim.) (Servant, Tait) Extra U(1) boson (Arkani-Ahmed, Weiner) Sterile right handed neutrino (Shaposhnikov) Weak scale scalar (Tytgat) Dark Matter Evidences
Astroparticle (part 0) : data.... WMAP : 0.094 < W h2< 0.129 CDMS (10-100 GeV DM) DAMA excess, direct detection (< 10 GeV DM) PAMELA/ATTIC (> 1 TeV DM) INTEGRAL : 511 keV line excess (< MeV DM) HEAT : Positron excess, (100 GeV DM) EGRET : gamma excess (100 GeV DM) HESS, gamma excess (10 TeV DM)
I J Boltzmann Equation . dn dt = -3 H n (H = R / R) . 2 2 [ - neq ] - < s v> n -27 3 -1 2 3.10 cm s Wh ~ ~ 0.1 < sv > Astroparticle (part I) : Relic Density (W)
Direct Detection : principle XENON (1 evt per kg per year) : 10 kg – 100kg – 1T H U U NUCLEUS
Indirect detection from GC c FERMI (2008) g c HESS (Namibie, 2004) g dFg1 dNg< s v > d W d E 2 dEg4p M ∫r2 dl = 2 2 < s v > (100 GeV) -13 -2 -1 J ∆W Fg(cm , s ) ~ 1010 -29 3 -1 2 10 cm s M -27 3 -1 -11 2 3.10 cm s Wh ~ ~ 0.1 → Fg ~ 10J DW < sv >
Positrons flux c 2 e- c r 1 dNe+ 2 dEe+ = Qsource < s v > M e+ .db(E) dE K(E) * D f(E,r)+ * f(E,r) + [particle/cm3] df(E,r) dt Qsource = 20 kpc E*K(E) b(E) Dsource (E) ~ 3 kpc -0.2 ~ 1.8 (E/1GeV) [Salati]
~ ~ ~ ~ ~ ~ ~ ~ L = M1 BB + M2 WW + m Hu Hd B ( Bino) W ( Wino) ~ ~ ~ ~ ~ ~ +MZ B Hu + MZ W Hd + M2staut t ~ t (Stau) t Bosons Fermions B W ~ ~ ~ ~ Neutralino : ci= ZiB B + ZiW W + Ziu Hu + Zid Hd ~ Hd Hd (Higgsino down) ~ Hu (Higgsino up) Hu SUSY for dummies
Neutralino Dark Matter 1 .c ~ ~ ~ ~ .f Hd B W Hu .c A .f M1 0 . . 0 M2 . . . . 0 -μ . .-μ 0 M= M = 2 m large tanb Bino c A ~ ~ H+ W + Stau Z .c W M ~ m Bino M ~ m Higgsino + c c .c Stau 2 3 .c .c tau Z
The relic density constraints M0 M1/2 Neutralino ≡ Bino M1= M / 2 High fluxes Neutralino ≡ Higgsino Light High fluxes Neutralino ≡ Bino M1 = M / 2 Low fluxes
Complementarity between different detection modes .q .c .c .q .c .f .c .q .c .q .f .c .e+ .c .c .c .c .e+ .e- .c .c .e- .q .q WMAP EGRET HESS FERMI LHC CDMS XENON HEAT Pamela AMS ILC
Gravitino DM In alternative scenario, the gravitino can be the lightest SUSY particle (40 % of the SUSY publications in 2009) It can happen if the SUSY breaking is not gravitationally mediated (Gauge Mediation, sequestred sector..) : the mass of the gravitino is “liberated” from the SUSY spectrum The gravitino couple only gravitationally with the visible sector : it is stable and is produced in the reheating epoch of the universe : its thermal relic depends on the reheating temperature, Wh2 ~ TR / Mgravitino BUT the next to lightest SUSY particle is long lived too because can only decay into SM + gravitino with gravitational type interaction : It can affect the primordial nucleosynthesis (BBN).
BBN constraints LSP (gravitino) NLSP (stau) SM (tau) Mgravitino BBN q BBN (5000 seconds) q TR=109 GeV tau 1 / Mplanck => Long lived NLSP (> 5000 seconds) TR=107 GeV neutrino Mstau
Conclusions Several candidates can respect WMAP constraints Different experiments reach different parts of the parameter space Strong correlation/complementarity Future sensitivity will be able to test 80 percent of SUSY parameter space
Adiabatique Compression ( r ) arb. units Baryons Baryon falls in the central region to form galaxy ReReRedistribution of masses in the gravitational potential 200 Neutralinos NFW 100 NFW compressed 1.5 (r) ~ 1/r (NFW compressed) 0 -2 -1 1 -3 Log10( r) N-Body simulation (NFW, Moore..) Today baryon distribution ??? Baryon fall in the Galactic Center Redistribution of mass in the gravitational potential (r) ~ 1/r Mi ( ri ) ri = [ MCDM ( rf ) + Mb (rf )] rf
Indirect detection : Mass measurement GLAST, 3yrs XENON, 3 yrs
Complementarity Direct, Indirect and ILC Colinear or soft-gamma approximation
Direct detection Indirect detection Leptonic collider Masse +/- 5 GeV +/- 10 GeV 50 GeV +/- 10 GeV +/- 20 GeV +/- 40 GeV 100 GeV +/- 25 GeV +/- 60 GeV +/- 90 GeV 175 GeV 500 GeV Summary Colinear or soft-gamma approximation
Nbr evts .e+ .n .e- .n Background Eg The background Colinear or soft-gamma approximation
A leptonic collider as a Dark Matter detector ILC WMAP .c .e+ .e+ .c .c .e- .e- .c Ke .sprod .sann Colinear or soft-gamma approximation
Direct Detection : the background XENON SUSY