1 / 36

Parameterization of surface fluxes

Parameterization of surface fluxes. Bart van den Hurk (KNMI/IMAU). Orders of magnitude. Estimate the energy balance of a given surface type What surface? What time averaging? Peak during day? Seasonal/annual mean? How much net radiation? What is the Bowen ratio (H/LE)?

mason
Télécharger la présentation

Parameterization of surface fluxes

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Parameterization of surface fluxes Bart van den Hurk (KNMI/IMAU) Land surface in climate models

  2. Orders of magnitude • Estimate the energy balance of a given surface type • What surface? • What time averaging? Peak during day? Seasonal/annual mean? • How much net radiation? • What is the Bowen ratio (H/LE)? • How much soil heat storage? • Is this the complete energy balance? • The same for the water balance • How much precipitation? • How much evaporation? • How much runoff? • How deep is the annual cycle of soil storage? • And the snow reservoir? Land surface in climate models

  3. General form of land surface schemes P E Q* H E Rs Infiltration D G • Energy balance equation K(1 – a) + L – L + E + H = G • Water balance equation W/t = P – E – Rs – D Land surface in climate models

  4. Structure of a land-surface scheme (LSS or SVAT) • 6 fractions (“tiles”) • Aerodynamic coupling • Vegetatie • Verdampingsweerstand • Wortelzone • Neerslaginterceptie • Kale grond • Sneeuw Land surface in climate models

  5. Structure of a land-surface scheme (LSS or SVAT) • 6 fractions (“tiles”) • Aerodynamic coupling • Wind speed • Roughness • Atmospheric stability • Vegetatie • Verdampingsweerstand • Wortelzone • Neerslaginterceptie • Kale grond • Sneeuw Land surface in climate models

  6. Structure of a land-surface scheme (LSS or SVAT) • 6 fractions (“tiles”) • Aerodynamic coupling • Wind speed • Roughness • Atmospheric stability • Vegetation • Canopy resistance • Root zone • Interception • Kale grond • Sneeuw Land surface in climate models

  7. Structure of a land-surface scheme (LSS or SVAT) • 6 fractions (“tiles”) • Aerodynamic coupling • Wind speed • Roughness • Atmospheric stability • Vegetation • Canopy resistance • Root zone • Interception • Bare ground • Sneeuw Land surface in climate models

  8. Structure of a land-surface scheme (LSS or SVAT) • 6 fractions (“tiles”) • Aerodynamic coupling • Wind speed • Roughness • Atmospheric stability • Vegetation • Canopy resistance • Root zone • Interception • Bare ground • Snow Land surface in climate models

  9. Specification of vegetation types Land surface in climate models

  10. Vegetation distribution Land surface in climate models

  11. Aerodynamic exchange • Turbulent fluxes are parameterized as (for each tile): • Solution of CH requires iteration: • CH = f(L) • L = f(H) • H = f(CH) a  Ta+gz a H s s L = Monin-Obukhov length Land surface in climate models

  12. More on the canopy resistance • Active regulation of evaporation via stomatal aperture • Two different approaches • Empirical (Jarvis-Stewart) rc = (rc,min/LAI) f(K) f(D) f(W) f(T) • (Semi)physiological, by modelling photosynthesis An =  f(W) CO2 / rc An = f(K, CO2) CO2 = f(D) Land surface in climate models

  13. Jarvis-Stewart functions • Shortwave radiation: • Atmospheric humidity deficit (D): f3 = exp(-cD) (c depends on veg.type) Land surface in climate models

  14. Jarvis-Stewart functions • Soil moisture (W = weighted mean over root profile): • Standard approach: linear profile f2 = 0 (W < Wpwp) = (W-Wpwp)/(Wcap-Wpwp) (Wpwp<W<Wcap) = 1 (W > Wcap) • Alternative functions (e.g. RACMO2) Lenderink et al, 2003 Land surface in climate models

  15. Effective rooting depth • Amount of soil water that can actively be reached by vegetation • Depends on • root depth (bucket depth) • stress function • typical time series of precip & evaporation • See EXCEL sheet for demo Land surface in climate models

  16. Numerical solution • Solution of energy balance equation • With (all fluxes positive downward) • Express all components in terms of Tsk (with Tp = Tskt -1) netradiation sensible heat flux latent heat flux soil heat flux Land surface in climate models

  17. Numerical solution • Substitute linear expressions of Tsk into energy balance equation • Sort all terms with Tsk on lhs of equation • Find Tsk = f(Tp , Tsoil , CH ,forcing, coefficients) Land surface in climate models

  18. Carbon exchange • Carbon & water exchange is coupled • Carbon pathway: • assimilation via photosynthesis • storage in biomass • above ground leaves • below ground roots • structural biomass (stems) • decay (leave fall, harvest, food) • respiration for maintenance, energy etc • autotrophic (by plants) • heterotrophic (decay by other organisms) Land surface in climate models

  19. The gross vegetation carbon budget GPP = Gross Primary Production NPP = Net Primary Production AR = Autotrophic Respiration HR = Heterotrophic Respiration C = Combustion GPP 120 C 4 AR 60 HR 55 NPP 60 Land surface in climate models

  20. The coupled CO2 – H2O pathway in vegetation models • qin = qsat(Ts) • Traditional (“empirical”) approach: rc = rc,min f(LAI)  f(light)  f(temp)  f(RH)  f(soil m) Land surface in climate models

  21. Modelling rc via photosynthesis • An =  f(soil m) CO2 / rc • Thus: rc back-calculated from • Empirical soil moisture dependence • CO2-gradient CO2 • f(qsat – q) • Net photosynthetic rate An • An,max • Photosynthetic active Radiation (PAR) • temperature • [CO2] Land surface in climate models

  22. Parameterization of soil and snow hydrology Bart van den Hurk (KNMI/IMAU) Land surface in climate models

  23. Soil heat flux • Multi-layer scheme • Solution of diffusion equation • with • C [J/m3K] = volumetric heat capacity • T [W/mK] = thermal diffusivity • with boundary conditions • G [W/m2] at top • zero flux at bottom Land surface in climate models

  24. Heat capacity and thermal diffusivity • Heat capacity • sCs  2 MJ/m3K, wCw  4.2 MJ/m3K • Thermal diffusivity depends on soil moisture • dry: ~0.2 W/mK; wet: ~1.5 W/mK Land surface in climate models

  25. Soil water flow • Water flows when work is acting on it • gravity: W = mgz • acceleration: W = 0.5 mv2 • pressure gradient: W = m  dp/ = mp/ • Fluid potential (mechanical energy / unit mass) • = gz + 0.5 v2 + p/ p = gz •  g(z+z) = gh • h = /g = hydraulic head = energy / unit weight = • elevation head (z) + • velocity head (0.5 v2/g) + • pressure head ( = z = p/g) Land surface in climate models

  26. Relation between pressure head and volumetric soil moisture content strong adhesy/ capillary forces dewatering from large to small pores retention curve Land surface in climate models

  27. Parameterization of K and D • 2 ‘schools’ • Clapp & Hornberger ea • single parameter (b) • Van Genuchten ea • more parameters describing curvature better • Defined ‘critical’ soil moisture content • wilting point ( @  = -150m or -15 bar) • field capacity ( @  = -1m or -0.1 bar) • Effect on water balance: see spreadsheet Land surface in climate models

  28. pF curves and plant stress • Canopy resistance depends on relative soil moisture content, scaled between wilting point and field capacity Land surface in climate models

  29. Boundary conditions • Top: F [kg/m2s] = T – Esoil – Rs + M • Bottom (free drainage) F = Rd = wK • with • T = throughfall (Pl – Eint – Wl/t) • Esoil = bare ground evaporation • Eint = evaporation from interception reservoir • Rs = surface runoff • Rd = deep runoff (drainage) • M = snow melt • Pl = liquid precipitation • Wl = interception reservoir depth • S = root extraction Pl Eint T Wl Esoil M Rs S Rd Land surface in climate models

  30. Parameterization of runoff • Simple approach • Infiltration excess runoff Rs = max(0, T – Imax), Imax = K() • Difficult to generate surface runoff with large grid boxes • Explicit treatment of surface runoff • ‘Arno’ scheme Infiltration curve (dep on W and orograpy) Surface runoff Land surface in climate models

  31. Snow parameterization • Effects of snow • energy reflector • water reservoir acting as buffer • thermal insolator • Parameterization of albedo • open vegetation/bare ground • fresh snow: albedo reset to amax (0.85) • non-melting conditions: linear decrease (0.008 day-1) • melting conditions: exponential decay • (amin = 0.5, f = 0.24) • For tall vegetation: snow is under canopy • gridbox mean albedo = fixed at 0.2 Land surface in climate models

  32. Parameterization of snow water • Simple approach • single reservoir • with • F = snow fall • E, M = evap, melt • csn = grid box fraction with snow • Snow depth • with • sn evolving snow density (between 100 and 350 kg/m3) • More complex approaches exist (multi-layer, melting/freezing within layers, percolation of water, …) Land surface in climate models

  33. Snow energy budget • with • (C)sn = heat capacity of snow • (C)i = heat capacity of ice • GsnB = basal heat flux (T/r) • Qsn = phase change due to melting (dependent on Tsn) Land surface in climate models

  34. Snow melt • Is energy used to warm the snow or to melt it? In some stage (Tsn 0C) it’s both! • Split time step into warming part and melting part • first bring Tsn to 0C, and compute how much energy is needed • if more energy available: melting occurs • if more energy is available than there is snow to melt: rest of energy goes into soil. Land surface in climate models

  35. Exercise • Given: • Derive the Penman-Monteith equation: Land surface in climate models

  36. More information • Bart van den Hurk • hurkvd@knmi.nl Land surface in climate models

More Related