1 / 64

Winners and Losers: Ecological and Biogeochemical Changes in a Future Ocean Stephanie Dutkiewicz

Winners and Losers: Ecological and Biogeochemical Changes in a Future Ocean Stephanie Dutkiewicz Massachusetts Institute of Technology Program in Atmospheres, Oceans and Climate Jeff Scott, Mick Follows Ilana Berman-Frank, Orly Levitan , Jeff Morris. OUTLINE.

Télécharger la présentation

Winners and Losers: Ecological and Biogeochemical Changes in a Future Ocean Stephanie Dutkiewicz

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Winners and Losers: Ecological and Biogeochemical Changes in a Future Ocean Stephanie Dutkiewicz Massachusetts Institute of Technology Program in Atmospheres, Oceans and Climate Jeff Scott, Mick Follows Ilana Berman-Frank, OrlyLevitan, Jeff Morris

  2. OUTLINE Marine biogeochemistry/ecology Model Frameworks: - Darwin Project - IGSM 3) Winners and Losers in future ocean: - Ecological Impacts - Biogeochemical Impacts 4) Future Directions Stephanie Dutkiewicz http://ocean.mit.edu/~stephd

  3. INTRODUCTION Stephanie Dutkiewicz http://ocean.mit.edu/~stephd

  4. INTRODUCTION fish zooplankton predators phytoplankton top predators Stephanie Dutkiewicz http://ocean.mit.edu/~stephd

  5. INTRODUCTION CO2 sunlight atmosphere ocean CO2 phytoplankton rest of food chain nutrients carbon stored in deep ocean Stephanie Dutkiewicz http://ocean.mit.edu/~stephd

  6. INTRODUCTION Dissolved Inorganic Carbon (mol C/m3) current ocean depth (m) dead ocean latitude Computer Simulations • A “dead” ocean would release almost 200ppmv of • CO2 to atmosphere Stephanie Dutkiewicz http://ocean.mit.edu/~stephd

  7. INTRODUCTION • DIVERSITY OF PHYTOPLANKTON: • differences in: • size, nutrients, light, growth rates, protection • large phytoplankton: • need high nutrient • environment; • support longer foodwebs; • export more carbon • small phytoplankton: • adapted to lower nutrient • environment; • support smaller foodweb; • export less carbon Stephanie Dutkiewicz http://ocean.mit.edu/~stephd

  8. INTRODUCTION Phytoplankton studies: genomics molecular lab studies field surveys satellite Stephanie Dutkiewicz http://ocean.mit.edu/~stephd

  9. INTRODUCTION SEAWiFS derived Chlorophyll Stephanie Dutkiewicz http://ocean.mit.edu/~stephd

  10. INTRODUCTION surface nutrient depth (m) nitrate (uM) distribution of nutrient with depth latitude Stephanie Dutkiewicz http://ocean.mit.edu/~stephd

  11. INTRODUCTION MODIS derived Chlorophyll Stephanie Dutkiewicz http://ocean.mit.edu/~stephd

  12. INTRODUCTION Phytoplankton studies: genomics molecular lab studies field surveys computer models satellite theory Stephanie Dutkiewicz http://ocean.mit.edu/~stephd

  13. OUTLINE Marine biogeochemistry/ecology Model Frameworks: - Darwin Project - IGSM 3) Winners and Losers in future ocean: - Ecological Impacts - Biogeochemical Impacts 4) Future Directions Stephanie Dutkiewicz http://ocean.mit.edu/~stephd

  14. MODEL FRAMEWORKS: DARWIN PROJECT Stephanie Dutkiewicz http://ocean.mit.edu/~stephd

  15. MODEL FRAMEWORKS: DARWIN PROJECT light generic zooplankton (‘grazer’) generic phytoplankton nutrient growth rates grazing rates detritus marine ecosystem models: follow matter from inorganic form through living biota some sinks out to depths Stephanie Dutkiewicz http://ocean.mit.edu/~stephd

  16. MODEL FRAMEWORKS: DARWIN PROJECT Darwin Project Model (Follows et al., Science 2007) light many (100+) phytoplankton zooplankton nutrients PO4 NO3 Fe Si grazing rates randomly assigned growth rates detritus some sinks out to depths Stephanie Dutkiewicz http://ocean.mit.edu/~stephd

  17. MODEL FRAMEWORKS: DARWIN PROJECT Darwin Project Model (Follows et al., Science 2007) light environment 1 phytoplankton nutrients zooplankton PO4 NO3 Fe Si grazing rates randomly assigned growth rates detritus some sinks out to depths Stephanie Dutkiewicz http://ocean.mit.edu/~stephd

  18. MODEL FRAMEWORKS: DARWIN PROJECT Darwin Project Model (Follows et al., Science 2007) light environment 2 phytoplankton zooplankton nutrients PO4 NO3 Fe Si grazing rates randomly assigned growth rates detritus some sinks out to depths Stephanie Dutkiewicz http://ocean.mit.edu/~stephd

  19. SeaWiFS ECCO2 + Darwin: Simulation credit: Oliver Jahn (MIT), DimitrisMenemelis (JPL), S Dutkiewicz (MIT) Chris Hill (MIT), Mick Follows (MIT) Stephanie Dutkiewicz http://ocean.mit.edu/~stephd

  20. MODEL FRAMEWORKS: DARWIN PROJECT Studies include: - phytoplankton community structure (who lives where and why) - strategies for survival (traits and trade offs) - biodiversity - impacts of climate change Stephanie Dutkiewicz http://ocean.mit.edu/~stephd

  21. OUTLINE Marine biogeochemistry/ecology Model Frameworks: - Darwin Project - IGSM 3) Winners and Losers in future ocean: - Ecological Impacts - Biogeochemical Impacts 4) Future Directions Stephanie Dutkiewicz http://ocean.mit.edu/~stephd

  22. MODEL FRAMEWORKS: IGSM • Integrated Global Systems Model: • Economics model (EPPA) linked • To Earth System Model of • Intermediate Complexity: Stephanie Dutkiewicz http://ocean.mit.edu/~stephd

  23. MODEL FRAMEWORKS: IGSM • Integrated Global Systems Model: • Economics model (EPPA) linked • To Earth System Model of • Intermediate Complexity: • Studies include: • - uncertainties in: • emission scenarios • climate sensitivity • aerosol forcing • ocean heat uptake • ocean/land carbon uptake • impact of climate change on: • vegetation • ocean carbon cycle • marine ecosystems Stephanie Dutkiewicz http://ocean.mit.edu/~stephd

  24. OUTLINE Marine biogeochemistry/ecology Model Frameworks: - Darwin Project - IGSM 3) Winners and Losers in future ocean: - Ecological Impacts - Biogeochemical Impacts 4) Future Directions Stephanie Dutkiewicz http://ocean.mit.edu/~stephd

  25. WINNERS AND LOSERS: Model Setup NOTE: no feedback from Darwin to IGSM (i.e. one way coupling) coarse resolution 3D ocean model (2x2.5deg) Stephanie Dutkiewicz http://ocean.mit.edu/~stephd

  26. WINNERS AND LOSERS: Model Setup 100 plankton with different traits: size, temperature, light, nutrients, palatibility log10 (biomass) Initial Conditions Stephanie Dutkiewicz http://ocean.mit.edu/~stephd

  27. WINNERS AND LOSERS: Model Setup 100 plankton with different traits: size, temperature, light, nutrients, palatibility log10 (biomass) Annual Biomass after 100 years of “current day” simulation Stephanie Dutkiewicz http://ocean.mit.edu/~stephd

  28. WINNERS AND LOSERS: Model Setup • “business of usual emissions scenario” • By 2100: • pCO2atmos 1100ppm • Tair +5C • SST +3C year Dutkiewicz et al, GBC, 2013 Stephanie Dutkiewicz http://ocean.mit.edu/~stephd

  29. WINNERS AND LOSERS: Changes to physical ocean Change (2100-2000) Sea Surface Temperature (oC) Seaice cover (fractional area) Stratification (dρ/dz) Meridional Overturning Circulation (Sv=106m3/s) Dutkiewicz et al, GBC, 2013 Stephanie Dutkiewicz http://ocean.mit.edu/~stephd

  30. WINNERS AND LOSERS: Changes to physical ocean Change (2100-2000) Meridional Overturning Circulation Stratification Consequences • Decreased supply of nutrient to surface sunlight layers • Potentially increased light in some areas surface nutrients distribution of nutrients with depth depth (m) latitude Stephanie Dutkiewicz http://ocean.mit.edu/~stephd nitrate (uM)

  31. ECOLOGICAL CONSEQUENCES: 2000 Phytoplankton growth factor temperature phytoplankton biomass (log gC/m3) Dutkiewicz et al, GBC, 2013 Stephanie Dutkiewicz http://ocean.mit.edu/~stephd

  32. ECOLOGICAL CONSEQUENCES: 2100 - 2000 Phytoplankton growth factor temperature biomass change phytoplankton biomass (log gC/m3) Dutkiewicz et al, GBC, 2013 Stephanie Dutkiewicz http://ocean.mit.edu/~stephd

  33. ECOLOGICAL CONSEQUENCES: Global % change in fraction of biomass in small phytoplankton both fraction small reduced nutrients only warming only • lower nutrients favors small recycling plankton: Stephanie Dutkiewicz http://ocean.mit.edu/~stephd

  34. ECOLOGICAL CONSEQUENCES: year Plankton rank abundance for 2000 Stephanie Dutkiewicz http://ocean.mit.edu/~stephd

  35. ECOLOGICAL CONSEQUENCES: warming+reduced nutrients: - winners and losers - greater fraction of smaller phytoplankton - 50% change in community structure by 2100 Stephanie Dutkiewicz http://ocean.mit.edu/~stephd

  36. ECOLOGICAL CONSEQUENCES: TODAY 2100 Stephanie Dutkiewicz http://ocean.mit.edu/~stephd

  37. ECOLOGICAL CONSEQUENCES: warming+reduced nutrients: - winners and losers - greater fraction of smaller phytoplankton - 50% change in community structure by 2100 • Sensitivity experiments • Just temperature changes • Just circulation/mixing changes Stephanie Dutkiewicz http://ocean.mit.edu/~stephd

  38. ECOLOGICAL CONSEQUENCES: warming+reduced nutrients: - winners and losers - greater fraction of smaller phytoplankton - 50% change in community structure by 2100 both %fraction small change reduced nutrients only warming only reduced nutrients only warming only both Stephanie Dutkiewicz http://ocean.mit.edu/~stephd

  39. BIOGEOCHEMICAL CONSEQUENCES: • primary production • export of carbon to deep ocean Dutkiewicz et al, GBC, 2013 Stephanie Dutkiewicz http://ocean.mit.edu/~stephd

  40. BIOGEOCHEMICAL CONSEQUENCES: % change in global primary production % change PP year Other studies have suggested both : Increase (e.g. Sarmiento et al, 2004; Schmittner et al, 2008) Decrease (e.g. Bopp et al, 2001, 2005; Steinacher et al 2008) Dutkiewicz et al, GBC, 2013 Stephanie Dutkiewicz http://ocean.mit.edu/~stephd

  41. WINNERS AND LOSERS: Changes to physical ocean Change (2100-2000) Sea Surface Temperature (oC) Phytoplankton Growth Rate Consequences Bissinger et al, L+O, 2008 Stephanie Dutkiewicz http://ocean.mit.edu/~stephd

  42. BIOGEOCHEMICAL CONSEQUENCES: % change in global primary production warming only both % change PP reduced nutrients only year • higher growth rates lead to increased production • (result of higher temperatures) • lower nutrient supply leads to decreased production • (result of increased stratification and changes to • circulation) Dutkiewicz et al, GBC, 2013 Stephanie Dutkiewicz http://ocean.mit.edu/~stephd

  43. BIOGEOCHEMICAL CONSEQUENCES: % change warming only primary production both reduced nutrients only both fraction small reduced nutrients only warming only export production warming only both reduced nutrients only year • lower nutrients favors small recycling plankton: Dutkiewicz et al, GBC, 2013 Stephanie Dutkiewicz http://ocean.mit.edu/~stephd

  44. BIOGEOCHEMICAL CONSEQUENCES: % change warming only primary production both reduced nutrients only both fraction small reduced nutrients only warming only export production warming only both reduced nutrients only year • lower nutrients favors small recycling plankton: • feedback - less export of carbon to deep ocean Dutkiewicz et al, GBC, 2013 Stephanie Dutkiewicz http://ocean.mit.edu/~stephd

  45. BIOGEOCHEMICAL CONSEQUENCES: 10 model mean IGSM+Darwin PP change (RCP8.5) EP change (RCP8.5) Dutkiewicz et al, GBC, 2013 Bopp et al BGD, 2013 Stephanie Dutkiewicz http://ocean.mit.edu/~stephd

  46. BIOGEOCHEMICAL CONSEQUENCES: Both Temperature only Circulation/mixing only Dutkiewicz et al, GBC, 2013 Stephanie Dutkiewicz http://ocean.mit.edu/~stephd

  47. ECOLOGICAL CONSEQUENCES: ACIDIFICATION Stephanie Dutkiewicz http://ocean.mit.edu/~stephd

  48. ECOLOGICAL CONSEQUENCES: ACIDIFICATION • Ocean has absorbed about 1/3 anthropogenic CO2 • Higher carbon leads to increased in acidity (lower pH) 1860 2000 2100 Surface pH alkaline>7 neutral=7 acidic<7 Stephanie Dutkiewicz http://ocean.mit.edu/~stephd

  49. ECOLOGICAL CONSEQUENCES: ACIDIFICATION • Ocean has absorbed about 1/3 anthropogenic CO2 • Higher carbon leads to increased in acidity (lower pH) 1860 2000 2100 “business as usual” scenario Surface pH alkaline>7 neutral=7 acidic<7 Numerical Simulation: IGSM Dutkiewicz et al, 2005 Stephanie Dutkiewicz http://ocean.mit.edu/~stephd

  50. ECOLOGICAL CONSEQUENCES: ACIDIFICATION • Higher carbon leads to increased in acidity (lower pH) 300ppm, 800ppm, corrosion at high pCO2 Response to enhanced CO2: detrimental neutral beneficial Fu et al, L+O, 2002 For summary: Doney et al, Ann Rev Mar Sci, 2009 Stephanie Dutkiewicz http://ocean.mit.edu/~stephd

More Related