1 / 54

Accelerating the Adoption of Electric Vehicles: Arctic EV Technology Showcase

Accelerating the Adoption of Electric Vehicles: Arctic EV Technology Showcase. Dr. W.A. (Bill) Adams Darryl McMahon Remote Energy Security Technologies Collaborative ( RESTCo ).

opa
Télécharger la présentation

Accelerating the Adoption of Electric Vehicles: Arctic EV Technology Showcase

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Accelerating the Adoption of Electric Vehicles:Arctic EV Technology Showcase Dr. W.A. (Bill) Adams Darryl McMahon Remote Energy Security Technologies Collaborative (RESTCo)

  2. In 2013, we are living in the beginning of the renaissance of the electric powered road vehicle.Exciting times! But it’s a long road ahead.Plug-in electric and hybrid vehicles make up less than 0.5% of new vehicle sales in Canada and the U.S., and are still an oddity on our roads, at less than 0.002% of the existing road fleet (cars and light trucks).

  3. Barriers to Adoption of Plug-in Vehicles There are real barriers to acceptance of EVs.1) Initial purchase cost 2)High perceived financial risk by consumer3)Range anxiety4) Lack of service centres5)Perceived high cost of operationThese are being addressed now.

  4. Barriers to Adoption of Plug-in Vehicles While selling 10s of thousands of plug-in vehicles a year in Canada and the U.S. is a huge step forward from just 4 years ago when we were selling dozens, clearly there is still a high degree of reluctance by car purchasers.

  5. Barriers to Adoption of Plug-in Vehicles Some real barriers do remain. If you want to buy an EV in Ottawa today, local Nissan dealers have a Leaf you can test drive. Other than that, you have a real challenge finding an EV to try out.

  6. Barriers to Adoption of Plug-in Vehicles However, the real barrier remaining for widespread EV adoption is mythology.EVs don’t work in the cold.EVs don’t go far enough on a charge. EVs actually increase air pollution.EVs will crash the electrical grid. EVs will fill the landfills with batteries.EVs won’t work in real-world conditions.And so on (and on and on)

  7. Barriers to Adoption of Plug-in Vehicles Enough! We know EVs work in the cold, and in the ‘real world’ and do it well. This paper’s authors were both driving EVs regularly in Ottawa winters in the 1980s.It’s time to explode the myths in a dramatic way, demonstrating EV advantages byshowcasing them at work at the Arctic Circle.

  8. Pang is a hamlet of about 1,300 permanent residents, situated in a fjord on Cumberland Sound, on the east coast of Baffin Island, about 40 km from the Arctic Circle.

  9. Welcome to Pangnirtung, Nunavut

  10. A winter view

  11. Average annual temperature: - 8 degrees CelsiusIn Jan. and Feb., theaveragelow: - 30 degrees Overnight lows approaching - 40 degrees are expected several days per year. That does not include the windchill. In Pang, winds over 100 km/h are sufficiently frequent that the houses are cabled to the ground. On November 27, 2010, wind speeds over 130 km/h were recorded at the Pangnirtung airport.

  12. This is why buildings in pang are tied down to the ground. Pangnirtung can have extremely high winds.

  13. Kite Skiing

  14. Wind turbines at Kotzebue, Alaska Average wind speeds in Pang are about 4 m/s (25 km/h), and blow from the west about 27% of the time.

  15. For about one month a year, the sun does not set. There is continuous daylight from April to mid-August. There is amazing potential for harnessing of solar power – thermal for space and water heating – and photovolatic for electricity production through 9-10 months of the year. Micro co-generation would make a good complement.

  16. Today, all electricity is currently produced using diesel generators (Qulliq Energy, Nunavut Power). All fossil fuels – diesel, heating oil, gasoline – are delivered by ship during a short window in the summer, when the fjord is ice free and the passage is relatively free from storms. The storm season is growing longer, so climate change is not really extending the annual sealift window.

  17. As the hamlet is located in a fjord between land mass rises, air can be trapped in the fjord during an inversion. Air quality suffers. The longest road in Pang is about 5 km long. There is a total of 15 km of roadway in total, none of it paved. Pangnirtung’s potholes are the stuff of legend.

  18. There is no piped water supply or sewage system, as you cannot economically dig into the rock and permafrost, and even if you did, the pipes would freeze – no ‘frostline’ as we have in the temperate south. Therefore, drinking water is delivered by truck a couple of times a week, and waste-water is trucked away. About 15 trucks are in regular use for these 2 services. They travel tens of kms a day.

  19. Water Delivery in Pangnirtung

  20. A larger version could deliver for Pang

  21. The main local industry is turbot fishing, using diesel and gasoline power boats. Tides at Pang are typically about 5 metres (over 16 feet). So there is potential for tidal energy to be used to generate power when the fjord is not frozen.

  22. Boats in Pangnirtung harbour – low tide

  23. Boats in Pangnirtung harbour – high tide

  24. Local transportation consists of trucks, some cars, but lots of ATVs, snowmobiles and boats. In the cold season, internal combustion engines are left running continuously (creating clouds of exhaust fumes), or block heaters and battery blankets are plugged in to ensure they will start. Outdoor electrical outlets are ubiquitous to support vehicle block heaters and battery warmers.

  25. Boats in Pangnirtung off-season storage

  26. Electric boats exist today The 2,200 hp Mercedes AMG electric cigarette boat concept vessel, capable of 160 km/h

  27. Electric boats exist today Want something a bit less flashy, more industrial? Perhaps ABB 3.5 MW azipod electric drives for icebreakers to break metre-thick ice.

  28. Electric boats exist today Perhaps something in-between would be more practical.

  29. ATVs in Pangnirtung

  30. Polaris Ranger EV Electric ATV (2014 model)

  31. Epic AMP Electric ATV (2014 model)

  32. Some older residents are returning to the dog sled as a less expensive, less noisy and safer means of transportation Snowmobiles in the Canadian Arctic

  33. Electric Snowmobiles

  34. Why EVs for a remote northern community? • Climate change is affecting the Arctic more rapidly than anywhere else on the planet – the residents are more inclined to take action to protect their way of life than in other areas • Their traditional food sources are threatened, and elders recognize that their traditional knowledge for forecasting weather is no longer effective

  35. Why EVs for a remote northern community? • All fossil fuels have to be shipped in, and shipping has a short, defined season • Even electricity is produced from diesel today ($0.38 to $0.47 per kWh) • Fossil fuel prices are rising – currently about $3/litre landed and delivered cost • Fossil fuels are not sustainable • Soot is recognized as speeding the Arctic ice melt (albedo effect)

  36. Why EVs for a remote northern community? • GHG emissions reductions • This community wants to reduce their fossil fuel dependency • Local energy resources can be used for electrical generation (tidal, ocean current, wind, solar) to displace diesel generation • Reduced noise levels • Reduced air and water pollution

  37. Why EVs for a remote northern community? • EVs will start and run in cold weather (winter charging electrical energy may be less than ‘ready-to-start’ electricity use) • Energy required to replace 10 km of daily travel for personal electric vehicle – 2 kWh (10 km / 5 km/kWh = 2 kWh = $0.80) • Energy required to power block heater (22 hours x 500 watts = 11 kWh = $4.40) • Up to 80% electricity reduction, does not include the vehicle fossil fuel saving

  38. Why EVs for a remote northern community? • Battery thermal management will be required • Quiet operation is seen as an advantage • Outdoor outlets (for engine heaters) are already installed and common and sufficient for most EV charging given short distances • EVs don’t have to run at idle to remain operational in the cold • Air quality at ‘lung-level’ will be improved • EVs can provide emergency electrical supply to buildings

  39. Why EVs for a remote northern community? • EVs can provide support for utility load levelling and storage for renewable energy generation • The central generation facility is old • Distances to be travelled are relatively short – no ‘range anxiety’ • Reduced fossil fuel demand and use reduces potential for oil product spills in the harbour and in the community, or affecting the turbot fishery

  40. Why EVs for a remote northern community? • Local residents are resourceful and successful • They build and maintain buildings, roads, boats, generators, engines, heavy equipment, computers, electronics … with training and basic support and spare parts, they can maintain EVs • If an EV can succeed at the Arctic Circle, they can succeed pretty much anywhere on the planet – they have already operated successfully on the moon

  41. RESTCo and Pang • RESTCo is collaborating with Pang today to help the hamlet reduce its dependency on fossil fuels, focusing on: • Energy efficient housing • Substituting renewables for electricity generation, and • Electric drive transportation • We hope to set an example for other remote communities for the future

  42. RESTCo and Pang RESTCo is collaborating with Carleton University and Moose Factory Cabins to design a truly efficient and healthy house model for Arctic communities. A design session with the community in Pang this winter will guide the layout. We expect to deliver the first house to Pang in the summer of 2014 sealift.

  43. RESTCo and Pang Part of the project is to integrate the house energy production (PV, wind) to charge an EV, assist with utility load levelling and provide backup power to the house.

  44. RESTCo and Pang We anticipate using a pilot smart micro-grid to help manage the electricity flows to help reduce diesel use. We talk about this sort of project in the south, but it will actually be easier to implement on a remote, small grid than on the complex continental grid.

  45. RESTCo and Pang

  46. RESTCo and Pang We are in discussions now with an EV OEM to work on battery thermal management and put a vehicle (or 2) in Pang in 2014 for municipal service. Assuming they see early success, we anticipate more to follow.

  47. RESTCo and Pang We are in discussions now with the developers of the original Samak prototype snowmobiles – developed with input from the Inuit in the 1980s, with a view to developing an updated, electric-hybrid version, appropriate for Arctic conditions.

  48. RESTCo and Pang One of RESTCo’s associated companies is a boat-builder based in Atlantic Canada. Due to concerns about oil pollution in water, they are increasingly interested in developing electric drive capacity in their work vessels, and we will continue to work with them.

  49. RESTCo and Pang We have an engaged community and we know EV technology works in the cold. RESTCo has the necessary expertise. The challenges will be in moving knowledge and support capacity into the community, and gaining general acceptance of a new, ‘southern’ technology.

More Related