1 / 43

Meso-NH model

Meso-NH model. A research model, jointly developped by Meteo-France and Laboratoire d’Aérologie (CNRS/UPS). 30 users laboratories. http://www.aero.obs-mip.fr/mesonh. Examples of Applications of Meso-NH. General description of Meso-NH, Grid nesting

pearly
Télécharger la présentation

Meso-NH model

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Meso-NH model A research model, jointly developped by Meteo-France and Laboratoire d’Aérologie (CNRS/UPS) 30 users laboratories http://www.aero.obs-mip.fr/mesonh

  2. Examples of Applications of Meso-NH • General description of Meso-NH, Grid nesting • Clouds representation (explicit) : convective events, Sc, Fog, cyclones • Diagnostics • Coupling with the surface • Coupling with other models (hydrology, dispersion) • Climatology • The physics of Meso-NH in AROME • Ways of improvements of Meso-NH

  3. General description of Meso-NH • Anelastic equations with the pseudo-incompressible system of Durran • Vertical coordinate following the terrain : (Gal Chen and Sommerville, 1975) • Temporal discretization : Purely explicit leap-frog scheme • Advection scheme : 2nd order and 4th order eulerian schemes • Spatial discretization : Arakawa C grid • Grid nesting : One-way/Two-way • Initial fields and LBC (radiative open) from ECMWF/ARPEGE/ALADIN. DYNAMICS • Turbulence : 1.5 order closure Cuxart-Bougeault-Redelsperger (2000) • Convection : Kain-Fritsch (1993) revised by Bechtold et al. (2001) • Microphysical scheme : Bulk schemes at 1-moment or 2-moments. Up to 7 prognostic species: vapor (rv), cloud (rc), rain (rr), pristine ice (ri), snow (rs), graupel (rg), hail (rh) • Radiation : ECMWF package • Chemical on-line scheme : Gazeous and aerosols (Presentation C.Mari, Thursday) • Externalized surface model(Presentation P.Le Moigne, this afternoon) PHYSICS

  4. Types of simulations • A broad range of resolution from synoptic scales (Dx~10km) to meso-scale (Dx~1km) to Large Eddy Simulation (Dx~10m) • Real cases (from ECMWF, ARPEGE, ALADIN analyses or forecasts) • Ideal cases  unrealistic cases • - Academic cases (validation of the dynamics) • - Basic studies (Diurnal cycle …) : Cloud Resolving Model (CRM) • - To reproduce an observed reality (via forcings) • (intercomparison : GCSS, EUROCS …) • Simulations 3D, 2D, 1D

  5. Grid nesting technics At every time step : The Coarse Model (CM) gives the lateral boundary conditions to Fine Model (FM) by interpolation One-way : the FM doesn’t influence the CM Two-way : CM fields are relaxed to the average of FM fields (all variables except TKE) A single constraint : an integer ratio between the resolutions and the time steps Same vertical grids.

  6. Vaison-la-Romaine : 22 september 1992 One-way Two-way 3 nested grids : 40/10/2.5km Instantaneous precipitations 2.5km Stein et al., 2000

  7. Vaison-la-Romaine : 22 september 1992 One-way Two-way 2.5 km Cumulated precipitations for 9h (Obs=300mm in 6h) 10km Stein et al., 2000

  8. Examples of Applications of Meso-NH • General description of Meso-NH, Grid nesting • Clouds representation (explicit) : convective events, Sc, Fog, cyclones, electricity • Diagnostics • Coupling with the surface • Coupling with other models (hydrology, dispersion) • Climatology • The physics of Meso-NH in AROME • Ways of improvements of Meso-NH

  9. Mixed phase cloud representation with a bulk scheme Nucleation Autoconversion Ice crystals Snowflakes Graupel Hail Cloud droplets Deposition Riming Aggregation Freezing 0°C 0°C Cloud droplets Raindrops Collection Collection Sedimentation

  10. MESO-NH Explicit microphysical scheme :

  11. U Convective Stratiform W H D Density Current q A tropical squall line (P.Jabouille) : Idealized simulation according to a real case (COPT81) Lafore Moncrieff 89

  12. Cloud droplets Rain drops Graupel Pristine ice Snow Jabouille. Caniaux et al., 1994

  13. 2 km Monte Lema 3 Doppler radars ( ) S Pol Ronsard 8 km Orographic precipitation 3D (MAP) How can dynamics modify the microphysics ? ECMWF32 km 32km : 150x150 8km : 145x145 2km : 150x150 over 51 levels (Keil et Cardinali, 2003) IOP2a (F>1) IOP8 (F<1) Lascaux et Richard, 2005

  14. Orographic precipitation 3D (MAP) Mean vertical distribution of hydrometeors IOP8 IOP2a Ice Snow Graupel Snow Hail Cloud Rain • IOP2a ( Strong convection) • - Deep system (unblocked unstable case, low Fr) • Large amount of hail and graupel IOP8 ( Stratiform event) - Shallow system (blocked case, high Fr) - Large amount of snow Budgets  Predominant microphysical processes Lascaux et Richard, 2005

  15. 4h-accumulated rainfall 18-22 UTC on 8 Sept. 2002 Cev. ‘95 Gard ‘02 Noc Aude ‘99 1D- q budget over the MCS (convective + stratiform). Ctrl Ctrl = with evaporative cooling Noc = without evaparative cooling Strong convective events on SE of FRANCE Impact de la convection sur la stationnarité d’un système How can mycrophysics modify the dynamics ? Nuissier et Ducrocq, 2006

  16. MESO-NH, x=2.5km m MESO-NH, x=2.5km max : 99 mm Initialisation Ducrocq et al (2000)’s max: 31 mm Quasi-stationnary MCS 13-14 Oct. 1995 MESO-NH, x=10km OBSERVATIONS m mm max : 25 mm max : 135 mm Initial conditions: ARPEGE analysis at 18UTC Cumulated precipitation 01 UTC to 06 UTC the 14th Oct. 1995 (Ducrocq et al, 2002)

  17. Cloud water mixing ratio (kg/kg) Max = 0.6 g/kg LES simulation of the diurnal cycle (Dx=50m) altitude (m) Min = 0.025 g/kg 0h 12h 0h 12h 0h Observations of the base and the top cloud layer Stratocumulus : Capped BL When the CBL is blocked by an anticyclonic subsidence FIRE 1 case of EUROCS : Forcing terms : a LS subsidence + cooling (dql/dt<0) and moistening (dqt/dt>0) under the inversion to balance the subsidence Sandu et al., 2006

  18. With cloud droplet sedimentation q rc rr FOG – 1D simulation – Temporal evolution on 18h from 18TU Without cloud droplet sedimentation rc q rr

  19. 7800 km, Dx=36km 1944 km , Dx=12km 720km , Dx=4km 3600km Simulation of cyclone : case of Dina Automatic method of Initialization : Filtering/Bogussing Barbary et al.

  20. Vertical cross-sections at Dx=4km K K m/s m/s W-E S-N Horizontal wind Barbary et al.

  21. + - + Explicite electrical scheme in Meso-NH Local separation of charges Transfert and transport of charges Microphysical and dynamical processes Electric field no E > Etrig yes Lightning parameterization Bidirectional leader (determinist) Vertical extension of the lightning Channel steps (probabiliste) Horizontal extension of the lightning Charge neutralization Barthe et al. [2005]

  22. Triggering of convection Apparaition of graupel Electrization of the cloud Apparition of electric field lightning Life cycle of electrical charges in a convective cell Simulation Méso-NH Barthe et Pinty, JGR

  23. Examples of Applications of Meso-NH • General description of Meso-NH, Grid nesting • Clouds representation (explicit) : convective events, Sc, Fog, cyclones • Diagnostics • Coupling with the surface • Coupling with other models (hydrology, dispersion) • Climatology • The physics of Meso-NH in AROME • Ways of improvements of Meso-NH

  24. Diagnostics • Budget (heat, momentum, microphysics species, TKE) with masks • Diagnostic fields (radar fields, comparison with airborne or ground observations) • Lagrangian trajectories (3 added prognostic fields) • Passive tracers • Tools for comparison to observations (Meso-NH tools : Presentation of I.Mallet, Wednesday 2 pm) http://www.aero.obs-mip.fr/mesonh/doc.html/#lagrangian

  25. Chaboureau and Pinty (2005) : Use of radiative transfer RTTOV to MSG Dx=30 km

  26. Radar reflectivity Observed reflectivity Simulated reflectivity (radar de Bollène le 8 sep. 2002 à 21 UTC, élévation=1,2°) Caumont, 2006

  27. Examples of Applications of Meso-NH • General description of Meso-NH, Grid nesting • Clouds representation (explicit) : convective events, Sc, Fog, cyclones • Diagnostics • Coupling with the surface • Coupling with other models (hydrology, dispersion) • Climatology • The physics of Meso-NH in AROME • Ways of improvements of Meso-NH

  28. EXTERNALIZED SURFACE : Exchange of data flow at each time step between the 2 models Boundary conditions for turbulence and radiative schemes Méso-NH AROME Arpège / Aladin albedo emissivity radiative temperature fluxes : Momentum, heat, water vapor, CO2, chemistry Atmosphere forcing Sun position Radiative fluxes SURFACE Lake Town Sea Nature Presentation of P.Le Moigne

  29. 3km 9km 9 UTC 85ppb <30ppb 15 UTC >90ppb >90ppb Parc Naturel Verdon Marseille Marseille Parc Naturel Verdon OZONE le 25 Juin 2001 Cousin et Tulet, 2004

  30. Atmospheric CO2 modelling :the Meso-NH model Online coupling with the surface scheme ISBA-A-gs :  CO2 surface fluxes : - assimilation (<0) CO2 absorption by vegetation - respiration (>0) CO2 emissions from ecosyst. depends on temperature - anthropogenic emissions (>0) and ocean fluxes (<0 in our latitude) Feedback : CO2 concentrations variations from the atmosphere to the surface Meso-NH Surface Meteorological Model LE, H, Rn, W, Ts… ISBA-A-gs CO2 Fluxes Atmospheric [CO2]concentrations Anthropogenic Sea Noilhan et al. 89, 96, Calvet et al., 98 Lafore et al., 98

  31. Simulated vertical cross section of the mixing ratio at 14UTC Zi = 1600m Zi = 900m OCEAN FOREST AREA AGRICUL. AREA Atmospheric CO2 modelling : May – 27 2005 Boundary layer heterogeneity

  32. Vertical cross section of observed CO2 by aircraft Forest area Agricultural area Atmospheric CO2 modellingMay – 27 2005 : comparisons obs/simu Simulated vertical cross section of CO2 Ocean - Marmande ocean forest cropland forest cropland

  33. Examples of Applications of Meso-NH • General description of Meso-NH, Grid nesting • Clouds representation (explicit) : convective events, Sc, Fog, cyclones • Diagnostics • Coupling with the surface • Coupling with other models (hydrology, dispersion) • Climatology • The physics of Meso-NH in AROME • Ways of improvements of Meso-NH

  34. Ardèche Cèze Gard Vidourle HYDROLOGY : Development of the coupling Meso-NH-ISBA-TOPMODEL K.Chancibault et al., CNRM/GMME/MICADO • TOPMODEL (Beven and Kirkby, 1979) distributed hydrologic model with one model by basin : 9 basins (200-2200 km²) • Objectives : - Flow and rapide flood forecasts - Retroaction of the hydrology on the atmosphere - Available for AROME

  35. Modelling system for environmental emergency Meso-scale meteorology Meso-NH • 2 grids (Regional Dx=8km, L=240km/ Local Dx=2km, L=60km) • 36 levels until 16km • ALADIN initialization and coupling • Lagrangian particle model • At least 10000 particles released • Advection+Turbulence+random • Applied to the 2 Meso-NH grids SPRAY • PERLE(Programmed’Evaluationdes Rejets Locauxd’Effluents) Dispersion Will be exported to AROME

  36. Examples of Applications of Meso-NH • General description of Meso-NH, Grid nesting • Clouds representation (explicit) : convective events, Sc, Fog, cyclones • Diagnostics • Coupling with the surface • Coupling with other models (hydrology, dispersion) • Climatology • The physics of Meso-NH in AROME • Ways of improvements of Meso-NH

  37. Geographical area with Meso-NH wind climatology Bourgogne 2 km Auvergne 2 km Vosges, Forêt Noire : 1.2 km Quiberon 1 km Limousin 1km Alpes du Nord 2 km Sud-Ouest 3 km Alpes du Sud 2 km Pourtour méditerranéen 3 km

  38. Measurements Roses Aladin 3 ans Méso-NH 95 dates North Alps

  39. Examples of Applications of Meso-NH • General description of Meso-NH, Grid nesting • Clouds representation (explicit) : convective events, Sc, Fog, cyclones • Diagnostics • Coupling with the surface • Coupling with other models (hydrology, dispersion) • Climatology • The physics of Meso-NH in AROME • Ways of improvements of Meso-NH

  40. AROME : Application of Researh to Operations at MEsoscale Future non-hydrostatic model 2.5km resolution Dynamics based on ALADIN-NH (semi-implicite, semi-lagrangian) Data assimilation ALADIN 3D-VAR Physics based on Méso-NH : microphysics ICE3, Turbulence 1D, shallow convection, externalised surface http://www.cnrm.meteo.fr/aladin/aladin2/traceMP/AROMErunMP.html

  41. Case of Gard, initial bogus Lame d’eau 12-22 Tu radar de Nîmes MésoNH 4s Arome 60s 304 mm 274 mm > 300 mm Couplage : Aladin 3h Forecasts • MésoNH • Dt= 4s , CPU = 24h20 • AROME • Dt =60s, CPU = 2h30

  42. Main current works of improvement for Meso-NH • DYNAMICS : Meso-NH computationaly too expensive (small Dt) – Handicap especially for chemistry simulation (a lot of species) : eulerian advection scheme, explicit temporal scheme.  New eulerian advection scheme (PPM) • PHYSICS: • Boundary layer clouds (Cu, Sc) at meso-scale (2km): interaction between shallow convection scheme, turbulence and cloud scheme • Radiation : revised, for overlapping cloud layers • Microphysics : Bulk 2 moment schemes for LES • Improvement of sedimentation advection

More Related