1 / 22

Introduction Fission in the r-process ( n,f )- and b -delayed fission fission cycling

Spontaneous fission of heavy nuclei and nucleosynthesis of cosmo-chronometers in the r-process. Panov Igor ( ITEP ). Introduction Fission in the r-process ( n,f )- and b -delayed fission fission cycling Contribution different fission modes l sf – predictions

remedy
Télécharger la présentation

Introduction Fission in the r-process ( n,f )- and b -delayed fission fission cycling

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Spontaneous fission of heavy nuclei and nucleosynthesis of cosmo-chronometers in the r-process. Panov Igor (ITEP) • Introduction • Fission in the r-process • (n,f)- and b-delayed fission • fission cycling • Contribution different fission modes • lsf– predictions • Superheavy nuclei and cosmochronometers • Conclusion

  2. 2. R-process under high neutron density environment – in NSM Observed Nr fission

  3. Network calculations of the r-process Z+2 fission b- Z (n,g) (g,n) a-decay b- Z-2 Pkn (k=0,1,2,3) A-4 A-2 A A+2 10

  4. beta-decay, lb Cross-sections and reaction rates (n,g), (n,f), .. beta-delayed processes Pin, Pbdf spontaneous fission, lsf Mass distribution of fission products Alpha-decay, Nuclear masses and fission barriers Nuclear data for the r-process(up to 6000 nuclei ) Data base of common usage JINA - Joint Institute of Nuclear Astrophysics

  5. 3. fission in the r-process and rates calculations • Seeger, Fowler, et al. (1965) ; Ohnishi (1977) • Thielemann, Metzinger, Klapdor, Zt.Phys., A309(1983) 301.Pbdf=100% • Goriely et al. Astron. Astrophys. 346, 798–804 (1999)s.f. (Swiatecky) • Panov et al., Nucl. Phys. A, 718 (2003) 647. (n,fission) vsPbdf • I.Korneev et al. NIC-2006; Astronomy Letters, 66 (2008) 131 Yff(Z,A) • Kelic, et al., Phys. Lett. B. 616 (2005) 48Yff(Z,A) • I.V. Panov, E. Kolbe, F.-K. Thielemann, T. Rauscher, B. Pfeiffer, K.-L. Kratz. NP A 747 (2005) 633 (n,fission) (n,g) Pbdf • G.Martinec-Pinedo et al, Progress in Particle and Nuclear Physics, 59 (2007) 199. (n,fission) vsPbdf • Y.-Z. Qian, Astron. J. 569 (2002), p. L103.n-induced fission • Kolbe, Langanke, Fuller.PhysRevLett. 2004n-induced fission • I. Petermann et. al. NIC-2008; G.Martinec-Pinedo et al, Progr.inParticleandNucl.Phys.,59(2007) 199-205:(n,fission), Pbdf, s.f., n-induced f. • Panov et al. AA 2010(n,fission) and (n,g) • PetermannMartinec-PinedoLangankePanovThielemannSHE AA2012 • Panov,I.Korneev, Yu. Lutostansky, F.-K. Thielemann. Yad.Fiz. 2013. Pbdi

  6. 4. Fission cycling during r-process for NSM conditions (t-duration time of the r-process; t=0 - initial composition) Neutron star mergers modelling: Rosswog et al. 1999 R-process: Panov I., Thielemann F.-K. AL, 30 (2004) 711

  7. 4. Fission cycling – fission fragments are involved in the r-process as new seeds

  8. 5. I.Petermann, A.Arcones, A.Keli´c, K.Langanke, G.Martínez-Pinedo, W.Schmidt, K-H.Hix, I. Panov, T. Rauscher, F.-K. Thielemann, N.Zinner, NIC-2008;

  9. R=∫li(t) / ∑i ∫li(t)dt

  10. 6. Spontaneous fission rates • Lg(lsf )~ Bf(Frankel&Metropolis,1947) : Lg(lsf ) =33,3-7,77Bf(exp) (1) Lg(lsf )=50,127-10,145Bf(etfsi) (2) Panov, Korneev, G. Martinez-Pinedo, Thielemann, 2013 • Lg(lsf ) = -1146,4 + 75,3Z2/A –1,638(Z2/A)2+ 0,012(Z2/A)3-(7,24 -0,095Z2/A)Bf (3) Zagrebaev, Karpov 2012 (Swiatecki, 1957) • Macro-micro model, Smolanchuk et al. 1997(4)

  11. BfETFSI- Mamdouh et al., NP 2001

  12. R-process path and abundancesYA(Z,N) when duration tr ~ 10s

  13. Squares – most abundant nuclei White dots:10% < Pbdf < 90% nn < 1022 cm-3, lng < lb

  14. A(progenitors) ~ < 260

  15. nn < 1012, lng << lb 25

  16. JINR => Zagrebaev et al. Phys. Rev. C 84, 044617 (2011) Amax(progenitors) ≈280

  17. Final abundance YA when s.f. rates ~ f(Bf)

  18. Final YA when s.f.rates - macro-micro model 30

  19. Conclusions • Spontaneous fission model strongly influe upon the r-process nucleosynthesis yields of nuclei-cosmochronometers • Among tested models of spontaneous fission phenomenological model based on Swiatecki model and on macro-micro model predictions gave the better results in calculation of yields of nuclei–cosmochronometers • Additionally to 232/235, 235/238 pairs of nuclei-cosmochronometers, pairs 232/244 or 238/244 can be considered • The detailed investigation of decay chain is needed

  20. Thank you! • everybody for attention and collaboration • SNF for support

  21. Final abundances YA , tR~ 0.4 – 4 109 years

More Related