1 / 26

Truth, Justice, and Cake Cutting

Truth, Justice, and Cake Cutting. Ariel Procaccia (Harvard SEAS). Standing on the shoulders of giants. Superman: “I’m here to fight for truth, justice, and the American Way.” Lois Lane: “You’re gonna wind up fighting every elected official in this country!” Superman (1978).

tab
Télécharger la présentation

Truth, Justice, and Cake Cutting

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Truth, Justice, and Cake Cutting Ariel Procaccia (Harvard SEAS)

  2. Standing on the shoulders of giants Superman: “I’m here to fight for truth, justice, and the American Way.” Lois Lane: “You’re gonna wind up fighting every elected official in this country!” Superman (1978)

  3. Truth, justice, and cake cutting • Division of a heterogeneous divisible good • The cake is the interval [0,1] • Set of agents N={1,...,n} • Piece of cake X  [0,1] = finite union of disjoint intervals • Each agent has a valuation function Vi over pieces of cake • Integral over a value density function vi • iN, Vi(0,1) = 1 • Find an allocation A1,...,An

  4. Truth, justice, and cake cutting • Proportionality:iN,Vi(Ai)  1/n • Envy-freeness: i,jN, Vi(Ai)  Vi(Aj) • Assuming free disposal the two properties are incomparable • Envy-free but not proportional: throw away cake • Proportional but not envy-free 1/3 1/2 1 1/6 1

  5. Some childhood nostalgia • Assume that n=2 • The cut and choose algorithm [Procaccia&Procaccia, circa 1987?]: • Player 1 cuts the cake into two pieces X1,X2s.t. V1(X1)=V1(X2) = ½ • Player 2 chooses the piece that he prefers • Player 1 gets the other piece • Not a bad algorithm! • Envy-free  proportional • (Contiguous pieces  one cut) 1/2 1/3 1/2 2/3

  6. Cake cutting is not a piece of cake • Very cool envy-free algorithm for n=3[Selfridge&Conway, circa 1960] • Envy-free algorithm for n4 [Brams&Taylor, 1995] • May require an unbounded number of steps! • Recent lower bounds in a concrete complexity model • Envy-free unbounded assuming contiguous pieces [Stromquist, 2008] • (n2) lower bound for envy-free cake cutting [Procaccia, 2009]

  7. Truth, justice, and cake cutting • Previous work considered strategyproof cake cutting [Brams, Jones & Klamler 2006, 2008] • Their notion: agents report the truth if there exist valuations for others s.t. agent does not gain by lying • Prior-free! • Truthful algorithm= truthfulness is a dominant strategy • Cut and choose is “strategyproof” but not truthful

  8. An inconvenient truth • Goal: design truthful, fair (envy-free and proportional), and tractable cake cutting algorithms • Requires restricting the valuation functions • Valuation Vi is piecewise constant if its value density function vi is piecewise constant • Valuation is piecewise uniform if moreover vi is some uniform constant or zero • Agent is uniformly interested in piece of cake Ui • Representation: boundaries of these intervals • A natural (?) restriction and also proof of concept

  9. Restricted valuations illustrated Piecewise constant valuation that is not piecewise uniform Piecewise uniform valuation 2 2 1 1 0 0 0 0.5 1 0 0.5 1 Vi([0,0.1][0.5,0.7]) = 0.4

  10. The case of two agents: take 1 • We first assume n=2 (and piecewise uniform valuations) • A simple algorithm: • For each agent, make a mark at the beginning and end of each of the agent’s desired intervals • For each subinterval between consecutive marks, allocate left half to agent 1and right half to agent 2 • Each agent gets value ½  envy-free and proportional • ... but not truthful • If U1 = [0,0.5] and U2 = [0,1] then A1= [0,0.25][0.5,0.75]and A2 = [0.25,0.5][0.75,1] • Agent 1 can gain by reporting [0,1] A1= [0,0.5]

  11. The case of two agents: take 2 Initialization phase: Discard [0,1]\U1U2 Make a mark at the beginning and end of each desired interval Allocate half of each subinterval between consecutive marks to agent 1 and half to agent 2 • Denote: • len(X) = the total length of intervals in X • X1 = U1\U2 , X2 = U2\U1, X12 = U1U2 • Assume len(U1)  len(U2) • Another simple algorithm (that works)

  12. The case of two agents: take 2 Swapping phase: Swap pieces Y,Z of equal length where agent 1 owns Y, agent 2 owns Z, YX2, ZX1 Swap pieces Y,Z of equal length where agent 1 owns Y, agent 2 owns Z, YX2, ZX12 If there are still pieces of X2 owned by agent 1, give them to agent 2 Initialization phase: • Discard [0,1]\U1U2 • Make a mark at the beginning and end of each desired interval • Allocate half of each subinterval between consecutive marks to agent 1 and half to agent 2 U1 X1 X2 U1 X12 U2 X2

  13. Properties of the algorithm (n=2) • Envy-free and proportional: obvious • There are two cases (given len(U1)  len(U2)): • len(U1)  len(U1U2)/2: the agents receive a desired piece of length len(U1U2)/2 (an exact allocation) • len(U1)  len(U1U2)/2: agent 1 gets U1and agent 2 gets X2 Swapping phase: • Swap pieces Y,Z of equal length where agent 1 owns Y, agent 2 owns Z, YX2, ZX1 • Swap pieces Y,Z of equal length where agent 1 owns Y, agent 2 owns Z, YX2, ZX12 • If there are still pieces of X2 owned by agent 1, give them to agent 2

  14. The algorithm is truthful (n=2) • Assume agent 1 misreports U’1 we have X’1 , X’2 , X’12 • Can assume len(U1)  len(U1U2)/2 • Originally got len(U1U2)/2 = (len(X1)+len(U2))/2 • Now gets  len(U’1U2)/2 = (len(X’1)+len(U2))/2 • len(X’1) = len(X1)k  increases length of piece by k/2 but length of k is useless • Crucial: Agent 1 first trades for X1 • len(X’1) = len(X1)k  decreases length of A1 by k/2, before all of A1 was desired

  15. The general algorithm: setup • Let S  N, X is a piece of cake • D(S,X) = (iSUi)X = portions of X desired by at least one agent in S • avg(S,X) = len(D(S,X))/|S| • A1,...,Anis exact wrt S,X if iS, len(Ai)=avg(S,X) and Ai is desired by agent i • For example, S={1,2} and X=[0,1] • U1=U2=[0,0.2]  A1=[0,0.1], A2=[0.1,0.2] is exact • U1=[0,0.2], U2=[0.3,0.7]  no exact allocation

  16. The general algorithm • Initialization: • SN, X[0,1] • While S • Sminargminavg(S’,X) • Let E1,...,En be an exact allocation wrt Smin,X • iSmin , AiEi • SS\Smin • XX\D(Smin,X) 0.6 S’S 0.39 U3 U2 0.1 U1 0 0

  17. The case of two agents revisited • Assume len(U1)  len(U2) • Sminis either {1} or {1,2} • len(U1)  len(U1U2)/2: Smin is {1,2},give exact allocation wrt {1,2},[0,1] • len(U1) < len(U1U2)/2: Smin is {1}, give 1 exact allocation wrt {1},[0,1] (U1), the rest to 2 in next iteration • Initialization: • SN, X[0,1] • While S • Sminargminavg(S,’X) • Let E1,...,En be an exact allocation w.r.t. Smin,X • iSmin , AiEi • SS\Smin • XX\D(Smin,X) S’S

  18. Exact allocations and network flow • There are two problematic steps in while loop: • Step 1: computing Smin? • Step 2: existence and computation of exact allocation? • Solution: use network flow • Initialization: • SN, X[0,1] • While S • Sminargminavg(S,’X) • Let E1,...,En be an exact allocation w.r.t. Smin,X • iSmin , AiEi • SS\Smin • XX\D(Smin,X) S’S

  19. Let it flow • Define a graph G(S,X) • Mark beginning and end of every interval in UiX • Nodes: consecutive markings, agents, s and t • For each I, edge (s,I) with capacity len(I) • Each iN connected to t with capacity avg(S,X) • Edge (I,i) with capacity  if agent i desires interval I 0.5,1  0.5  0,0.1 1 0.1  0.45 0.15 s 0.1,0.25 t 0.45  0.1 0.4,0.5 2 0.15  0.25,0.4 U1= [0,0.25][0.5,1] , U2 = [0.1,0.4]

  20. A lemma • Lemma: Let SN, a piece of cake X. If for all S’S, avg(S’,X)  avg(S,X) then there is a network flow of size len(D(S,X)) in G(S,X) • Proof: • Max Flow = Min Cut • Disconnect subset TS from t at cost |T|avg(S,X) • Need to additionally disconnect len(D(S\T,X)) =|S\T|avg(S\T,X) |S\T|avg(S,X) 0.5,1  0.5  0,0.1 1 0.1  0.45 0.15 s 0.1,0.25 t 0.45  0.1 0.4,0.5 2 0.15  0.25,0.4

  21. Properties of the algorithm • Lemma: Let SN, a piece of cake X. If there exists a network flow of size len(D(S,X)) in G(S,X) then there is an exact allocation wrt S,X • If Smin minimizes avg(S’,X) then there is an exact flow wrt Smin,X, can be computed using network flow algorithms • Computing Smin is similar but more involved • Theorem: assume that the agents have piecewise uniform valuations, then the algorithm is truthful, proportional, envy-free, and polynomial-time

  22. Randomized algorithms • A randomized alg is universally envy-free (resp., universally proportional) if it always returns an envy-free (resp., proportional) allocation • A randomized alg is truthful in expectation if an agent cannot gain in expectation by lying • Looking for universal fairness and truthfulness in expectation • Does it make sense to look for fairness in expectation and universal truthfulness? • Theorem: assume that the agents have piecewise linear valuations, then there is a randomized alg that is truthful in expectation, universally proportional, universally envy-free, and polynomial-time

  23. Discussion • Conceptual contributions • Truthful cake cutting • Restricted valuations functions and tractable algorithms • Communication model • Many previous discrete algorithms can be simulated using eval and cut queries • Our algorithms are centralized • Future work • Generalize deterministic algorithm • Piecewise uniform valuations with minimum interval length

  24. Bibliographic notes • Yiling Chen, John K. Lai, David C. Parkes and Ariel D. Procaccia. Truth, Justice, and Cake Cutting. In the proceedings of AAAI 2010 • Full version coming soon, will be posted online (rought draft available on request)

  25. Properties of the algorithm • There are two problematic steps in while loop: • Step 1: computing Smin? • Step 2: existence and computation of exact allocation? • Solution: use network flow / max flow min cut • Theorem: assume that the agents have piecewise uniform valuations, then the algorithm is truthful, proportional, envy-free, and polynomial-time • Initialization: • SN, X[0,1] • While S • Sminargminavg(S,’X) • Let E1,...,En be an exact allocation w.r.t. Smin,X • iSmin , AiEi • SS\Smin • XX\D(Smin,X) S’S

More Related