1 / 42

Lecture 1 Introduction to Remote Sensing „Rules of the Game“

Remote Sensing Summer 2008 Björn-Martin Sinnhuber and Astrid Bracher Room NW1 - U3215 Tel. 218 8958 bms@iup.physik.uni-bremen.de bracher@uni-bremen.de www.iup.uni-bremen.de/~bms/remote_sensing. Lecture 1 Introduction to Remote Sensing „Rules of the Game“

tucker
Télécharger la présentation

Lecture 1 Introduction to Remote Sensing „Rules of the Game“

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Remote SensingSummer 2008Björn-Martin Sinnhuber and Astrid BracherRoom NW1 - U3215Tel. 218 8958bms@iup.physik.uni-bremen.debracher@uni-bremen.dewww.iup.uni-bremen.de/~bms/remote_sensing Sinnhuber & Bracher, Remote Sensing, University of Bremen, Summer 2008

  2. Lecture 1Introduction to Remote Sensing • „Rules of the Game“ • Examples of Remote Sensing Applications Sinnhuber & Bracher, Remote Sensing, University of Bremen, Summer 2008

  3. Outline General Principles of Remote Sensing Lecture 1Introduction to Remote Sensing Lecture 2Electromagnetic Radiation Lecture 3 Radiative Transfer Lecture 4 Satellite Remote Sensing Lecture 5Retrieval Techniques / Inverse Methods Remote Sensing of the Atmosphere: Lecture 6 Microwave Tehniques Lecture 7 Infra-Red Techniques Lecture 8 Spectroscopy Lecture 9Optical (UV / Visible) Remote Sensing Lecture 10Active Techniques and Meteorological Applications Remote Sensing of the Ocean Surface: Lecture 11 Sea Ice Remote Sensing Lecture 12Remote Sensing of Ocean Currents and SST Lecture 13Ocean Colour & Summary Sinnhuber & Bracher, Remote Sensing, University of Bremen, Summer 2008

  4. General Information: „The rules of the game“ Lecture • 13 lectures, every Monday 13:15-14:45 • ECTS: 4 • One „rapporteur“ gives brief summary (5 min.) of previous lecture. Mandatory for each student. Fix your date in the list (check on website)! Exercises • 10 exercises: turned out Mondays, given back next Monday, 10 points total for each exercise • Exercises are discussed every Thursdays 13:15-14:00 (not 1st and last week, not holidays 1st and 15th May) with Gregor Kiesewetter (gregor@iup.physik.uni-bremen.de, phone: 2188689) Exam • Written exam 14 July 2008; 9:30-11:30 • Prerequisite: >70 points in all exercises and one report Sinnhuber & Bracher, Remote Sensing, University of Bremen, Summer 2008

  5. Literature • Charles ElachiIntroduction to the Physics and Techniques of Remote Sensing • Graeme L. StephensRemote Sensing of the Lower Atmosphere • Martin Seelye An Introduction to Ocean Remote Sensing Sinnhuber & Bracher, Remote Sensing, University of Bremen, Summer 2008

  6. Lecture 1Introduction to Remote Sensing • „Rules of the Game“ • Examples of Remote Sensing Applications Sinnhuber & Bracher, Remote Sensing, University of Bremen, Summer 2008

  7. Photo takenby crew ofApollo 17 7 Dec 1972 Sinnhuber & Bracher, Remote Sensing, University of Bremen, Summer 2008

  8. from maps.google.com Sinnhuber & Bracher, Remote Sensing, University of Bremen, Summer 2008

  9. A Note on Spatial Resolution The maximum achievable resolution with an optical system is given by with α: opening angle, D: diameter of the optical aperture,λ: wavelength. Because with x: object size and h: sensor height we get (Rayleigh criterion) α h x Sinnhuber & Bracher, Remote Sensing, University of Bremen, Summer 2008

  10. Resolution: An example Assume some typical values: h: 800 km, D: 4m (huge!),λ: 500 nm: Sinnhuber & Bracher, Remote Sensing, University of Bremen, Summer 2008

  11. ENVISAT: Launched 1 March 2002 Sinnhuber & Bracher, Remote Sensing, University of Bremen, Summer 2008

  12. MERIS/ENVISAT Sinnhuber & Bracher, Remote Sensing, University of Bremen, Summer 2008

  13. SeaWIFS, 26. Feb. 2000 Sinnhuber & Bracher, Remote Sensing, University of Bremen, Summer 2008

  14. MERIS/ENVISAT, Cloud Top Pressure Sinnhuber & Bracher, Remote Sensing, University of Bremen, Summer 2008

  15. Ocean colour: MERIS/ENVISAT, 443 nm Sinnhuber & Bracher, Remote Sensing, University of Bremen, Summer 2008

  16. Ocean colour: MERIS/ENVISAT, 560 nm Sinnhuber & Bracher, Remote Sensing, University of Bremen, Summer 2008

  17. Ocean colour: MERIS/ENVISAT, Chlorophyll Sinnhuber & Bracher, Remote Sensing, University of Bremen, Summer 2008

  18. Absorption windows of atmospheric constituents Sinnhuber & Bracher, Remote Sensing, University of Bremen, Summer 2008

  19. Antarctic Ozone Hole Observing the Ozone Layer http://www.iup.physik.uni-bremen.de/gomenrt/ Global measurements of total ozone columns Measurement type: Satellite-based passive remote sensing Instrument:Global Ozone Monitoring Experiment (GOME) /ERS-2 Measured quantity: Total ozone columns (from backscattered solar radiation) Sinnhuber & Bracher, Remote Sensing, University of Bremen, Summer 2008

  20. The Arctic Ozone Layer Ten years of GOME observtions Sinnhuber & Bracher, Remote Sensing, University of Bremen, Summer 2008

  21. 100 m 10-4 cm-1 10 MHz 10 m 10-3 cm-1 Radio 100 MHz 1 m 10-2 cm-1 1 GHz 10 cm 0.1 cm-1 10 GHz Microwave 1 cm 1 cm-1 100 GHz 1 mm 10 cm-1 1 THz sub-mm – Far IR 0.1 mm 100 cm-1 10 THz 10 μm 1000 cm-1Thermal IR al IR 100 THz Near IR 1 μm 104 cm-1 1000 THz Ultraviolet 100 nm 105 cm-1 Wavelength Frequency Wave number Visible 400-700 nm The Electromagnetic Spectrum Sinnhuber & Bracher, Remote Sensing, University of Bremen, Summer 2008

  22. Solar Spectrum and Terrestrial Spectrum Sinnhuber & Bracher, Remote Sensing, University of Bremen, Summer 2008

  23. MODIS / Terra, Gulfstream Temperature Sinnhuber & Bracher, Remote Sensing, University of Bremen, Summer 2008

  24. Sinnhuber & Bracher, Remote Sensing, University of Bremen, Summer 2008

  25. AMSU-B Data (183 ±1 GHz) Microwave Remote Sensing Dry areas in the UT (NOAA 16, Channel 18, 15.6.2004. Figure: Oliver Lemke) Sinnhuber & Bracher, Remote Sensing, University of Bremen, Summer 2008

  26. Satellite Limb Sounding (Figure: Oliver Lemke) Sinnhuber & Bracher, Remote Sensing, University of Bremen, Summer 2008

  27. Microwave Limb Sonder (MLS) onboard UARS Sinnhuber & Bracher, Remote Sensing, University of Bremen, Summer 2008

  28. Airborne Microwave Remote Sensing Sinnhuber & Bracher, Remote Sensing, University of Bremen, Summer 2008

  29. ASUR frequency range and primary species Sinnhuber & Bracher, Remote Sensing, University of Bremen, Summer 2008

  30. A picture from the SOLVE campaignin Kiruna, Sweden, January 2000 Sinnhuber & Bracher, Remote Sensing, University of Bremen, Summer 2008

  31. Validation of satellite data is important ... Sinnhuber & Bracher, Remote Sensing, University of Bremen, Summer 2008

  32. Ground-based Radiometer for Atmospheric Measurements (RAM) Sinnhuber & Bracher, Remote Sensing, University of Bremen, Summer 2008

  33. Measured Microwave Spectrum by the RAM Sinnhuber & Bracher, Remote Sensing, University of Bremen, Summer 2008

  34. Pressure Broadening of Spectral Lines 50km / 0.5 hPa 20km / 50 hPa 10km / 200 hPa Sinnhuber & Bracher, Remote Sensing, University of Bremen, Summer 2008

  35. The matrix A is also called as the weighting function matrix. Finding x from measured y would require inversion of A: However, this is generally not possible (inverse of A does not exist). Therefore one has to find some „generallized“ inverse of A: A Note on Profile Retrieval Often we can describe the relation between the (unknown)atmospheric profile x and the measured spectrum y by alinear equation: Sinnhuber & Bracher, Remote Sensing, University of Bremen, Summer 2008

  36. Lidar In-space Technology Experiment (LITE) on Discovery in September 1994 as part of the STS-64 mission http://www-lite.larc.nasa.gov/index.html Sinnhuber & Bracher, Remote Sensing, University of Bremen, Summer 2008

  37. Radar Image ENVISAT ASAR 15 April 2005 Sinnhuber & Bracher, Remote Sensing, University of Bremen, Summer 2008

  38. Sea ice concentration fromAMSR-E 89 GHz 15 April 2007 www.seaice.de courtesy of Lars Kaleschke Sinnhuber & Bracher, Remote Sensing, University of Bremen, Summer 2008

  39. Sea ice concentration fromAMSR-E 89 GHz 15 April 2007 www.seaice.de False colour image courtesy of Lars Kaleschke Sinnhuber & Bracher, Remote Sensing, University of Bremen, Summer 2008

  40. Sea ice concentration fromAMSR-E 89 GHz 06 April 2008 www.seaice.de False colour image courtesy of Lars Kaleschke Sinnhuber & Bracher, Remote Sensing, University of Bremen, Summer 2008

  41. pollution biomass burning Example: SCIAMACHY Tropospheric NO2 Courtesy of Andreas Richter Sinnhuber & Bracher, Remote Sensing, University of Bremen, Summer 2008

  42. GOME annual changes in tropospheric NO2 1996 - 2002 GOME NO2: Temporal Evolution • 7 years of GOME data • DOAS retrieval + CTM-stratospheric correction • seasonal and local AMF based on 1997 MOART-2 run • cloud screening • NO2 reductions in Europe and parts of the US • strong increase over China • consistent with significant NOx emission changes A. Richter et al., Increase in tropospheric nitrogen dioxide over China observed from space, Nature, 4372005 Sinnhuber & Bracher, Remote Sensing, University of Bremen, Summer 2008

More Related