Download
protein synthesis n.
Skip this Video
Loading SlideShow in 5 Seconds..
PROTEIN SYNTHESIS PowerPoint Presentation
Download Presentation
PROTEIN SYNTHESIS

PROTEIN SYNTHESIS

185 Vues Download Presentation
Télécharger la présentation

PROTEIN SYNTHESIS

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. PROTEIN SYNTHESIS Higher Level

  2. For Protein Synthesis You need: • A supply of amino acids – cytoplasm • Instructions as how to join the amino acids together – genetic code • An assembly line – ribosomes • A messenger to carry information from DNA to ribosomes

  3. Protein Synthesis - Steps 1. Transcription 2. Translation • Remember: DNA  RNA  Protein

  4. RNA is composed of 3 parts • Ribose: smaller sugar than deoxyribose of DNA • Phosphate • 4 Nitrogenous Bases A,G,U,C RNA is single stranded and thus smaller & able to leave the nucleus of the cell

  5. Nuclear membrane DNA Transcription RNA Processing mRNA Ribosome Translation Protein Transcription Translation DNA  RNA Protein Eukaryotic Cell

  6. DNA Transcription mRNA Ribosome Translation Protein DNA  RNA Protein Prokaryotic Cell – No nucleus

  7. Learning Check • What is RNA composed of? • How does RNA(ribonucleic acid) differ from DNA (deoxyribonucleic acid)? • What are the three stages in Protein synthesis?

  8. 1. Transcription Eukaryotic Cell Pic BBC bitesize

  9. 1. Transcription • The transfer of information in the nucleus from a DNA molecule to an RNA molecule. • Only 1 DNA strand serves as the template • When complete, mRNA molecule is released into the cytoplasm

  10. Transcription • Takes places in the nucleus of the cellThe process by which the information from DNA is transferred to RNA. DNA uncoils and unzips. • The exposed DNA bases are matched up with RNA bases in the nucleus to form mRNA.

  11. DNA RNA Polymerase mRNA 1. Transcription Enzyme

  12. A U G G G C U U A A A G C A G U G C A C G U U • This is a molecule of messenger RNA. • It was made in the nucleus by transcription from a DNA molecule. codon mRNA molecule

  13. Learning Check • What type of RNA molecule is responsible for taking the DNA copy from the nucleus into the cytoplasm • What parts of the cell do you find RNA in? • Can you outline the stages in transcription?

  14. mRNA • Takes place in the nucleus of the cellThe process by which the information from DNA is transferred to RNA. DNA uncoils and unzips. • The exposed DNA bases are matched up with RNA bases in the nucleus to form mRNA.

  15. Types of RNA • Three types ofRNA: A. messenger RNA (mRNA) B. transfer RNA (tRNA) C. ribosomal RNA (rRNA) • Remember: all produced in thenucleus!

  16. A. Messenger RNA (mRNA) • Carries the information for a specific protein. • Made up of 500 to 1000 nucleotides long. • Made up of codons(sequence of three bases) • Each codon is specific for one amino acid.

  17. start codon A U G G G C U C C A U C G G C G C A U A A mRNA codon 1 codon 2 codon 3 codon 4 codon 5 codon 6 codon 7 stop codon protein methionine glycine serine isoleucine glycine alanine Primary structure of a protein aa2 aa3 aa4 aa5 aa6 aa1 peptide bonds A. Messenger RNA (mRNA)

  18. B. Transfer RNA (tRNA) • Made up of 75 to 80 nucleotides long. • Picks up the appropriate amino acid floating in the cytoplasm • Transports amino acids to the mRNA. • Has anticodons that are complementary to mRNAcodons. • Recognizes the appropriate codons on the mRNA and bonds to them with H-bonds.

  19. C. Ribosomal RNA (rRNA) • Made up of rRNA is 100 to 3000 nucleotides long. • Important structural component of a ribosome. • Associates with proteins to form ribosomes.

  20. Ribosomes • Large and small subunits. • Composed of rRNA (40%) and proteins (60%). • Both units come together and help bind the mRNA and tRNA.

  21. mRNA A U G C U A C U U C G Ribosomes Large subunit Small subunit

  22. Learning Check • What are the three types of RNA? • Where is each type produced? • What is the function of each type of RNA?

  23. Nuclear membrane DNA Transcription Pre-mRNA RNA Processing mRNA Ribosome Translation Protein 3. Translation Eukaryotic Cell

  24. 3. Translation • Synthesis of proteins in the cytoplasm • Involves the following: 1. mRNA (codons) 2. tRNA (anticodons) 3. rRNA 4. ribosomes 5. amino acids

  25. Translation • In the cytoplasm, translation occurs.The mRNA binds to a ribosome. • The strand of mRNA is pulled through the ribosome three bases at a time, in triplets. • Each of these triplets on the mRNA strand is called a codon.

  26. A U G G G C U U A A A G C A G U G C A C G U U • This is a molecule of messenger RNA. • It was made in the nucleus by transcription from a DNA molecule. codon mRNA molecule

  27. ribosome A U G G G C U U A A A G C A G U G C A C G U U A ribosome on the rough endoplasmic reticulum attaches to the mRNA molecule.

  28. Amino acid tRNA molecule anticodon U A C A U G G G C U U A A A G C A G U G C A C G U U A transfer RNA molecule arrives. It brings an amino acid to the first three bases (codon) on the mRNA. The three unpaired bases (anticodon) on the tRNA link up with the codon.

  29. U A C C C G A U G G G C U U A A A G C A G U G C A C G U U Another tRNA molecule comes into place, bringing a second amino acid. Its anticodon links up with the second codon on the mRNA.

  30. C C G A A U A U G G G C U U A A A G C A G U G C A C G U U Another tRNA molecule brings the next amino acid into place.

  31. C C G C C G A U G G G C U U A A A G C A G U G C A C G U U A peptide bond joins the second and third amino acids to form a polypeptide chain.

  32. G U C A C G A U G G G C U U A A A G C A G U G C A C G U U The process continues. The polypeptide chain gets longer. This continues until a termination (stop) codon is reached. The polypeptide is then complete.

  33. tRNA Transfer RNA (tRNA), reads the strand of mRNA and translates it into a strand of amino acids. A molecule of tRNA has at one end a set of three bases that will complement the mRNA strand; this is called the anticodon.

  34. tRNA • If the 3 base anticodon of the tRNA complements the 3 base codon of the mRNA, they briefly combine. • The amino acid is left behind when the tRNA leaves. • As each codon is read, the next tRNA brings in a new amino acid and the polypeptide (protein) chain grows. • This requires enzymes and ATP.

  35. aa5 aa4 aa3 aa2 aa199 aa1 aa200 End Product • The end products of protein synthesis is a primary structure of a protein. • A sequence of amino acid bonded together by peptide bonds.

  36. Functional Protein • The protein now has to undergo folding and the addition of bonds • Folding allows the Protein to reach its 3D (Tertiary Shape) which influences its Function.

  37. Learning Check The anticodonUAC belongs to a tRNA that recognizes and binds to a particular amino acid. What would be the DNA base code for this amino acid?

  38. Answer: • tRNA - UAC (anticodon) • mRNA - AUG (codon) • DNA - TAC

  39. End