html5-img
1 / 9

Tanto por ciento o porcentajes Cálculo de porcentajes Porcentajes, fracciones y decimales

Tanto por ciento o porcentajes Cálculo de porcentajes Porcentajes, fracciones y decimales Cálculo de porcentajes mediante decimales Resolución de problemas. ·3. ·2. ·4. 1. Tanto por ciento o porcentaje. Tenemos bolsas de 25 caramelos, entre los cuales 5 son de menta.

Télécharger la présentation

Tanto por ciento o porcentajes Cálculo de porcentajes Porcentajes, fracciones y decimales

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Tanto por ciento o porcentajes Cálculo de porcentajes Porcentajes, fracciones y decimales Cálculo de porcentajes mediante decimales Resolución de problemas

  2. ·3 ·2 ·4 1. Tanto por ciento o porcentaje Tenemos bolsas de 25 caramelos, entre los cuales 5 son de menta. ¿Cuántos caramelos de menta habrá por cada 100 caramelos? 25 caramelos 50 caramelos 75 caramelos 100 caramelos 5 de menta 10 de menta 15 de menta 20 de menta Hay 20 caramelos de menta por cada 100 caramelos. 20 % Un tanto por ciento o porcentaje es la cantidad que hay en cada 100 unidades. Se expresa añadiendo a la cantidad el símbolo %

  3. El 20% = El 15% de 360 es igual a 2. Cálculo de porcentajes Las paredes de una cocina se han recubierto de azulejos blancos y verdes, siguiendo este modelo. En la figura aparecen 100 azulejos, de los cuales 20 son verdes. Esto es, el 20% ¿Cuántos azulejos verdes se colocaron si se han necesitado 1550 para recubrir las paredes? El 20% de 1550 = Para calcular un tanto por ciento o porcentaje de una cantidad, se multiplica la cantidad por la fracción equivalente al porcentaje. Se han colocado 310 azulejos Ejemplo: En una clase hay 25 estudiantes, de los cuales el 60% son alumnas. ¿Cuántas alumnas hay en la clase? Ejercicio: El 60% de 25 = Hay 15 alumnas.

  4. El 65% = El 100% = 3. Porcentajes, fracciones y números decimales Cada porcentaje es equivalente a una fracción. Así, el 65% = Por tanto, existe una relación clara entre los porcentajes, las fracciones y los números decimales. Veámosla esquemáticamente: Porcentajes Fracciones Decimales Para obtener el número decimal equivalente a un porcentaje se separan con una coma, empezando por la derecha, dos cifras decimales en la cantidad que indica el porcentaje. Porcentaje Fracción Número decimal 65% 0,65

  5. 4. Cálculo de porcentajes mediante números decimales La relación entre los porcentajes, las fracciones y los números decimales se observa en el esquema: Porcentajes Fracciones Decimales Un tipo de fideos contiene 21% de proteínas. ¿Cuántos gramos de proteínas contendrán 500 g de estos fideos? Aplicación: 21% de 500 = Contiene 105 gramos de proteínas. El porcentaje de una cantidad se puede calcular multiplicando la cantidad por el número decimal equivalente al porcentaje. 34% de 250 = 0,34 × 250 = 85

  6. 5. Resolución de problemas (I) A Mercedes le gusta mucho un libro de Arte que cuesta 25 €, pero por ser la Feria del Libro está rebajado en un 12%. ¿Cuánto cuesta el libro? La rebaja es el 12% de 25 = El libro cuesta 25 – 3 = 22 € Si rebajan el 12%, se pagará el 88% de su valor inicial. OBSERVA 88% de 25 = 0,88 × 25 = 22 Ricardo esta disgustado porque por retrasarse unos días en pagar una deuda de 160 € le han aplicado un recargo del 15%. ¿Cuánto tiene que pagar? El recargo es el 15% de 160 = 0,15 × 160 = 24 Debe pagar 160 + 24 = 184 € Si le recargan el 15%, pagará el 115% de su valor inicial. OBSERVA 115% de 160 = 1,15 × 160 = 184

  7. 15% 0,15 6. Resolución de problemas (II) Problema:Una tienda de discos hace un 15% de descuento. Isabel ha decidido aprovechar estas rebajas para comprar discos compactos con las 120 € que tiene ahorradas. ¿Cuántos dis-cos podrá comprar si el precio de cada uno de ellos sin el descuento es de 12 euros? Primero: Leer el enunciado y subrayar los datos y lo que hay que averiguar Se dispone de 120 €. Se hace un 15% de descuento. Cada disco vale 12 euros. Segundo: Interpretar la información del enunciado mediante un esquema El 15% de descuento significa que rebajan 15 € por cada 100 de compra. 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 0,85 Cada disco costará 12 · 0,85; el 85% de 12 Tercero: Hacer los cálculos necesarios y criticar el resultado Precio inicial: 12 € Precio rebajado: 0,85 · 12 = 10’20 € Isabel puede comprar: 120 : 10’20 = 11,76 (Pero esta cantidad no es posible con discos). Comprará 11 discos, por 11 · 10’20 = 112’20 € Le quedarán 112’20 – 120 = 7’80 euros

  8. 10080 90x 7. Problemas de porcentajes (I) Ejemplo1. En las rebajas de enero el descuento de una tienda es del 20% sobre el precio indicado. Un señor compra un juego de toallas etiquetado con 90 euros. ¿Cuánto tiene que pagar? Un descuento del 20% quiere decir que de cada 100 euros pagamos 80. Aplicando la regla de tres, se tiene: Si de 100 euros pagamos 80 De 90 euros pagaremos x Tendrá que pagar 72 euros por el juego de toallas. En la práctica Un descuento del 20% equivale a multiplicar por 0,20. La cantidad resultante es lo rebajado. Rebaja: 90 · 0,20 = 18. Se paga: 90 – 18 = 72 euros Directamente. Si descuentan el 20%, se pagará el 80%. Se pagarán 90 · 0,80 = 72 euros

  9. 8200x 100116 8. Problemas de porcentajes (II) Ejemplo 2. Una señorita compra un coche cuyo precio de fábrica es de 8200 euros. A este precio hay que añadirle un16% de IVA (impuesto sobre el valor añadido). ¿Cuál será el precio final del coche? Si el impuesto es del 16%, quiere decir que por cada 100 euros debemos pagar 116. Aplicando la regla de tres simple se tiene: Si por 100 euros pagamos 116 Por 8200 euros pagaremos x Por tanto, tendrá que pagar 9512 euros por el coche. En la práctica Un incremento del 16% equivale a multiplicar por 0,16. La cantidad resultante es el incremento total. Incremento: 8200 · 0,16 = 1312. Se paga: 8200 + 1312 = 9512 euros Directamente. Si se incrementa el 16%, se pagará el 116%. Se pagarán 8200 · 1,16 = 9512 euros

More Related