1 / 19

A Comparison of Step 3 & Step 4

A Comparison of Step 3 & Step 4. Timothy Carlisle, Oxford CM 28. Step 3. Step 3 rematched for 830 mm spool piece Calc. B(z) & BetaFn with the following: Minimize F at 1 point in a const. field region in 2 nd Tracker. Matching Step 3. Beta Fn. [cm]. 140 120 100 80 60 40 20.

xander
Télécharger la présentation

A Comparison of Step 3 & Step 4

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A Comparison of Step 3 & Step 4 Timothy Carlisle, Oxford CM 28

  2. Step 3

  3. Step 3 rematched for 830 mm spool piece Calc. B(z) & BetaFn with the following: Minimize F at 1 point in a const. field region in 2nd Tracker. Matching Step 3 Beta Fn. [cm] 140 120 100 80 60 40 20 -5 -4 -3 -2 -1 0 z [m] • Many solutions... F = 0.5*(βγ0 - αα0 + β0γ)

  4. Step 3 Empty: 6mm e beam SigPz = 1 MeV/c, 100k muons 140 120 100 80 60 40 20 4 3 2 1 0 -1 -2 -3 -4 Bz [T] on Axis Beta Fn. [cm] M1 = 158.9 M2 = 92.4 -5 -4 -3 -2 -1 0 z [m] -5 -4 -3 -2 -1 0 z [m] Av. Pz [MeV/c 6.08 6.06 6.04 6.02 6 Emittance [mm] 202 201.5 201 200.5 200 199.5 -5 -4 -3 -2 -1 0 z [m] -5 -4 -3 -2 -1 0 z [m]

  5. Amplitude Cooling... Step 3 empty Step 4 empty Amp OUT Amp OUT 140 120 100 80 60 40 20 140 120 100 80 60 40 20 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 Amp IN Amp IN 6mm beam, SigPz = 1 MeV/c, 100k muons

  6. Amplitude Cooling... Step 3: LiH Step 4: LH2 Amp OUT Amp OUT 140 120 100 80 60 40 20 140 120 100 80 60 40 20 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 AmpIN Amp IN 6mm beam, SigPz = 1 MeV/c, 100k muons

  7. Theoretical Cooling Performance de/e Input beam emittance [mm]

  8. G4MICE : 100k mu, SigPz =1 MeV/c heating cooling

  9. de/e heating Input beam emittance [mm] cooling

  10. Focus Coil switched off No LH2 Minimized Fn at z= -0.3 m ~ centre of 2nd Tracker Range of solutions: Step IV but without FC 4 3 2 1 0 -1 -2 -3 -4 Bz [T] on Axis -4 -2 0 z [m] 160 140 120 100 80 60 40 20 F = 0.5*(βγ0 - αα0 + β0γ) Beta Fn. [cm] -5 -4 -3 -2 -1 0 z [m]

  11. Transmission 6mm beam, SigPz = 1 MeV/c, 100k muons Step 4: No FC currents Step 3: Empty Step 4: Empty 100 99.5 99 98.5 98 97.5 100 99.8 99.6 99.4 99.2 90 100 99.8 99.6 99.4 99.2 90 Raw Beam 1000 mu 1% 400 mu 0.4% 400 mu 0.4% Transmitted within Tracker Quality cut: Amp < 16*Av. e -5 -4 -3 -2 -1 0 z [m] -5 -4 -3 -2 -1 0 z [m] -5 -4 -3 -2 -1 0 z [m]

  12. Conclusions • Clearly more difficult to measure cooling in Step 3 • ~10 x more heating than Step 4 • Step 3 cooling disagrees with theory • e0 < theory – don’t know why (same in ICOOL) • Need to include Tracker reconstruction... • It appears we can run Step 4 without FC currents • Is this useful– Trackers? • Can we run Step 4 with no currents in M1,M2 & FC? • Alignments?

  13. Extras...

  14. Step 3 – comparison with existing data.. Empty Channel LiH absorber 6% 3% 0 -2% -4% 5% 2% 0 heating heating cooling 0 1 2 3 4 5 6 7 8 9 10 Input emittance [mm] 0 1 2 3 4 5 6 7 8 9 10 Input emittance [mm] Black Data: 100k mu, SigPz =1 MeV/c, G4MICE MarcoData: 10k mu, SigPz = big (10%), ICOOL – note 199

  15. Step3 Empty: 1mm e beam SigPz = 1 MeV/c, 100k muons 140 120 100 80 60 40 20 4 3 2 1 0 -1 -2 -3 -4 M1 = 158.9 M2 = 92.4 B(z) on Axis Bz [T] on Axis Beta Fn. [cm] -5 -4 -3 -2 -1 0 z [m] -5 -4 -3 -2 -1 0 z [m] Av. Pz [MeV/c 200.4 200.3 200.2 200.1 200 Emittance [mm] -5 -4 -3 -2 -1 0 z [m] -5 -4 -3 -2 -1 0 z [m]

  16. Step 3 LiH: 6mm e beam SigPz = 1 MeV/c, 100k muons 140 120 100 80 60 40 20 4 3 2 1 0 -1 -2 -3 -4 Bz [T] on Axis Beta Fn. [cm] M1 = 158.9 M2 = 92.4 -5 -4 -3 -2 -1 0 z [m] -6 -4 -2 0 z [m] 210 208 206 204 202 200 198 196 194 5.9 5.85 5.8 5.75 5.7 Emittance [mm] Av. Pz [MeV/c -5 -4 -3 -2 -1 0 z [m] -5 -4 -3 -2 -1 0 z [m]

  17. Step 4 Empty: 6mm e beam SigPz = 1 MeV/c, 100k muons 140 120 100 80 60 40 20 4 3 2 1 0 -1 -2 -3 -4 Bz [T] on Axis Beta Fn. [cm] Beta Fn. [cm] -5 -4 -3 -2 -1 0 z [m] -6 -4 -2 0 2 z [m] 5.952 5.95 5.948 5.946 5.944 5.942 202 201.5 201 200.5 200 Av. Pz [MeV/c Emittance [mm] -5 -4 -3 -2 -1 0 z [m] -5 -4 -3 -2 -1 0 z [m]

  18. Step 4 LH2: 6mm e beam SigPz = 1 MeV/c, 70k muons 140 120 100 80 60 40 20 4 3 2 1 0 -1 -2 -3 -4 Bz [T] on Axis Beta Fn. [cm] -6 -4 -2 0 z [m] -6 -4 -2 0 2 z [m] 5.9 5.7 208 206 204 202 200 198 196 Emittance [mm] Av. Pz [MeV/c -5 -4 -3 -2 -1 0 z [m] -5 -4 -3 -2 -1 0 z [m]

  19. Step 3 Empty Step 4 Empty Output AmpSq • Step 3 LiH • Step 4 LH2

More Related