1 / 22

Semiconductor Device Modeling and Characterization – EE5342 Lecture 25 – Spring 2011

Semiconductor Device Modeling and Characterization – EE5342 Lecture 25 – Spring 2011. Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/. The npn Gummel-Poon Static Model. C. R C. I CC - I EC = IS ( exp(v BE /NFV t - exp(v BC /NRV t )/Q B. I BR. B. R BB. I LC.

zeal
Télécharger la présentation

Semiconductor Device Modeling and Characterization – EE5342 Lecture 25 – Spring 2011

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Semiconductor Device Modeling and Characterization – EE5342 Lecture 25 – Spring 2011 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/

  2. The npn Gummel-Poon Static Model C RC ICC -IEC = IS(exp(vBE/NFVt - exp(vBC/NRVt)/QB IBR B RBB ILC B’ IBF ILE RE E

  3. IBF = ISexpf(vBE/NFVt)/BF ILE = ISEexpf(vBE/NEVt) IBR = ISexpf(vBC/NRVt)/BR ILC = ISCexpf(vBC/NCVt) QB = (1 + vBC/VAF + vBE/VAR ) {½ + [¼ + (BFIBF/IKF + BRIBR/IKR)]1/2 } Gummel Poon npnModel Equations

  4. RC vBCx vBC - iB + + RB vBE - RE iE BJT CharacterizationReverse Gummel vBEx= 0 = vBE+ iBRB- iERE vBCx = vBC+iBRB+(iB+iE)RC iB = IBR + ILC = (IS/BR)expf(vBC/NRVt) + ISCexpf(vBC/NCVt) iE = bRIBR/QB = ISexpf(vBC/NRVt) (1-vBC/VAF-vBE/VAR ) {IKR terms}-1

  5. Sample rg data forparameter extraction • IS=10f • Nr=1 • Br=2 • Isc=10p • Nc=2 • Ikr=.1m • Vaf=100 • Rc=5 • Rb=100 iB data iE data iE, iB vs. vBCext

  6. Reverse GummelData Sensitivities Region a - IKRIS, RB, RC, NR, VAF Region b - IS, NR, VAF, RB, RC Region c - IS/BR, NR, RB, RC Region d - IS/BR, NR Region e - ISC, NC c vBCx = 0 a d e b iB iE iE(A),iB(A) vs. vBC(V)

  7. Region (b) rgData Sensitivities Region b - IS, NR, VAF, RB, RC iE = bRIBR/QB = ISexp(vBC/NRVt) (1-vBC/VAF-vBE/VAR ){IKR terms}-1

  8. Region (a) rgData Sensitivities Region a - IKRIS, RB, RC, NR, VAF iE=bRIBR/QB~[ISIKR]1/2exp(vBC/2NRVt) (1-vBC/VAF-vBE/VAR )

  9. Region (e) rgData Sensitivities Region e - ISC, NC iB = IBR + ILC = IS/BRexpf(vBC/NRVt) + ISCexpf(vBC/NCVt)

  10. Region (d) rgData Sensitivities Region d - BR, IS, NR iB = IBR + ILC = IS/BRexpf(vBC/NRVt) + ISCexpf(vBC/NCVt)

  11. Region (c) rgData Sensitivities Region c - BR, IS, NR, RB, RC iB = IBR + ILC = IS/BRexpf(vBC/NRVt) + ISCexpf(vBC/NCVt)

  12. Simple extraction of NR, NC from rg data Data set used Nr = 1 Nc = 2 Flat Neff region from iE data = 1.00 for 0.195 < vBC < 0.375 Max Neff value from iB data is 1.914 for 0.195 < vBC < 0.205 iB data iE data NEeff vs. vBCext

  13. Simple extractionof IS, ISC from data Data set used • IS = 10fA • ISC = 10pA Min ISeff for iE data = 9.96E-15 for vBC = 0.200 Max ISeff value for iB data is 8.44E-12 for vBC = 0.200 iB data iE data ISeff vs. vBCext

  14. Simple extractionof BR from data • Data set used Br = 2 • Extraction gives max iE/iB = 1.7 for 0.48 V < vBC < 0.55V 1.13A< iE < 14.4A • Minimum value of Neff =1 for same range iE/iB vs. iE

  15. Forward ActiveHybrid-pi Circuit model Fig 9.33*

  16. Gummel PoonBase Resistance If IRB = 0, RBB = RBM+(RB-RBM)/QB If IRB > 0 RB = RBM + 3(RB-RBM)(tan(z)-z)/(ztan2(z)) Regarding (i) RBB and (x) RTh on previous slide, RBB = Rbmin + Rbmax/(1 + iB/IRB)aRB

  17. RB and RE from FG data

  18. RB and RE from FG data • In this case, the data were generated with • RB = 98.76 W, compare to 77.4 - 32.3 • RE = 1.432 W, compare to 32.3

  19. h11_vs_ib

  20. h11_vs_frequency

  21. h11_vs_1/ib

  22. References 1 OrCAD PSpice A/D Manual, Version 9.1, November, 1999, OrCAD, Inc. 2 Semiconductor Device Modeling with SPICE, 2nd ed., by Massobrio and Antognetti, McGraw Hill, NY, 1993. * Semiconductor Physics & Devices, by Donald A. Neamen, Irwin, Chicago, 1997. ** Modeling the Bipolar Transistor, by Ian Getreau, Tektronix, Inc., (out of print).

More Related