1 / 11

Exploring Cyanoacetylene Oligomers: Insights into Cyano-Substituted Cyclobutadienes and Dewar Benzenes

This study investigates the intriguing world of cyanoacetylene oligomers, particularly focusing on cyano-substituted cyclobutadienes and Dewar benzenes. Authors from the University of Wisconsin, Technische Universität Braunschweig, and Gottfried-Wilhelm-Leibniz-Universität Hannover present experimental findings and theoretical analyses, exploring the stability and reaction pathways of these molecules. Key details include their formation, computed energies using the B3LYP/6-31G* method, and implications for astrochemistry and molecular recognition. Join us to delve into these captivating nano-scale compounds.

arden-joyce
Télécharger la présentation

Exploring Cyanoacetylene Oligomers: Insights into Cyano-Substituted Cyclobutadienes and Dewar Benzenes

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Studies of Cyanoacetylene Oligomers: Cyano-SubstitutedCyclobutadienes, Dewar-Benzenes, and Benzenes Jessica L. Menke Robert J. McMahon—University of Wisconsin, MadisonHenning Hopf—Technische Universität Braunschweig, Braunschweig, Germany Jens-Uwe Grabow—Gottfried-Wilhelm-Leibniz-Universität, Hannover, Germany Midwest Astrochemistry Meeting University of Illinois November 8, 2008 Image from www.nasa.gov

  2. Cyano-Containing Molecules in the ISM & Titan’s Atmosphere Herbst, E. J. Phys. Chem. A 2005, 109, 4017; Young, Y. L. Icarus1987, 72, 468; Strobel, D. F. Int. Rev. Phys. Chem.1983, 3, 145; Mizutani, H. Origins of Life1975, 6, 513; Becker, R. S.; Hong, J. H. J. Phys. Chem.1983, 87, 163; Herbst, E. Chem. Soc. Rev.2001, 30, 168.

  3. Interesting/Unexpected Experimental Results Witulski, B.; Ernst, L.; Jones, P. J.; Hopf, H Angew. Chem. Int. Ed. Engl.1989, 28, 1279. Hopf, H.; Witulski, B Pure & Appl. Chem.1993, 65, 47. Breitkopf, V.; Hopf, H.; Klärner, F.-G.; Witulski, B.; Zimmy, B. Liebigs Ann.1995, 613.

  4. Proposed Reaction Pathway 4 Not seen experimentally Relative energies (kcal/mol) computed using B3LYP/6-31G* level with ZPVE corrections Witulski, B.; Ernst, L.; Jones, P. J.; Hopf, H Angew. Chem. Int. Ed. Engl.1989, 28, 1279. Hopf, H.; Witulski, B Pure & Appl. Chem.1993, 65, 47. Breitkopf, V.; Hopf, H.; Klärner, F.-G.; Witulski, B.; Zimmy, B. Liebigs Ann.1995, 613.

  5. Photochemical Formation of Cyano-Benzenes 5 Guillemin, J. C.; Ferris, J. P. European Space Agency, [Special Publication], SP, 1992, ESA-SP-338 177. Woods, P. M.; Millar, T. J.; Zijlstra, A. A.; Herbst, E. Astrophys. J. 2002, 574, L167.

  6. Computed Rotational Constants and Dipole Moments 6 Rotational Constants (GHz) Rotational Constants (cm-1) Dipole Moment (D) 1.41295 55.9434 0.88410 18.8926 7.51 0.54380 14.1232 1.86607 42.3591 0.63019 25.2125 3.78 0.47110 16.3027 0.90219 27.0469 0.90219 27.0469 0.00 0.45109 13.5233 Computed at the B3LYP/6-31G* level Wohlfart, K.; Schnell, M.; Grabow, J.-U.; Kupper, J. J. Mol. Spectrosc.2008, 247, 119.

  7. Isolation of Various Cyclobutadienes 7 Isolated Masamune, 1977 Matrix Isolated Peterson, 1997 Isolated Maier, 1988 Matrix Isolated Krantz, 1973 Isolated Cram, 1991 “Self Destructive Molecule Lives Longer in Prison” Isolated Gompper, 1968 Image: Cram, D. J.; Cram, J. M. Container Molecules & Their Guests, Royal Soc. Of Chemistry: Great Britain, 1994, 209. Quote: Milgrom, L. J. Inclusion Phenom. Mol. Rcognit. Chem.1992, 13, 97.

  8. Cyano-Substitution Effects on Cyclobutadiene 8 n = 0 n = 1 0.0 -9.4 n = 2 -15.3 -15.3 -14.5 Relative energies (kcal/mol) computed using B3LYP/6-31G* level without ZPVE corrections n = 3 n = 4 Order of Stabilization tBu < H < CN < SiH3 < Me < SiMe3 -17.8 -18.4 Maier, G.; Neudert, J.; Wolf, O.; Pappusch, D.; Sekiguchi, A.; Tanaka, M.; Matsuo, T. J. Am. Chem. Soc.2002, 124, 13819. Balci, M.; McKee, M. L.; Schleyer, Paul von Rague J. Phys. Chem. A2000, 104, 1246.

  9. Cyano-Substitution Effects on Cyclobutadiene Singlet-Triplet Gaps 9 Triplet S-T gap Singlet aS-T Gap < 0 = singlet ground state. bCorrected for ZPV energies.

  10. Current/Future Studies 10 Krantz, A.; Lin, C. U.; Newton, M. D. J. Am. Chem. Soc. 1973, 95, 2744. Chapman, O. L.; De la Cruz, P.; Roth, R.; Pacansky, J. J. Am. Chem. Soc.1973, 95, 1337. Bell,G. A.; Dunkin, I. R.; Shields, C. J. Spectrochin. Aceta, Part A, 1985, 41A, 1221. Webster, O. W. J. Am. Chem. Soc.1966, 88, 4055.

  11. Acknowledgements 11 • Robert J. McMahon • The McMahon Group • Nikki Burrmann • Katherine Traynor • Chris Shaffer • Laura Kopff • Brian Esselman • Alex Nolan • Matt Biller • Jeff Slosarxzyk • Dr. Caroline Pharr • Dr. Phillip Thomas • NSF for funding Lady Liberty on Lake Mendota, Lake Mendota, University of Wisconsin, Madison

More Related