490 likes | 696 Vues
Atom interferometry History, fundamentals and recent theories. Christian J. Bordé. LPL & SYRTE. Académie des sciences. OUTLINE OF THE THREE LECTURES A traditional approach to atom interferometry 5D Relativistic atom interferometry
E N D
Atom interferometry History, fundamentals and recent theories Christian J. Bordé LPL & SYRTE Académie des sciences
OUTLINE OF THE THREE LECTURES • A traditionalapproach to atominterferometry • 5D Relativisticatominterferometry • Application to atomicclocks and to gravito-inertialsensors http://christian.j.borde.free.fr/
A traditionalapproach to atominterferometry • Background: neutron interferometrymeets laser spectroscopy • Recoilphysics and beamsplitters • Klein-Gordon and WKB • Schroedingerequation and ABCD framework • Lagrange invariant • General formula for the phase shift • 5D Relativisticatominterferometry • Application to atomicclocks and to gravito-inertialsensors http://christian.j.borde.free.fr/
This LLL silicon crystal neutron interferometer was cut with a diamond wheel for Sam Werner in the Missouri Physics Machine Shop by Cliff Holmes in 1977. It was used to observe gravitationally-induced quantum interference, the Aharonov-Casher phase shift, the Neutron Sagnac Effect, and several other fundamental quantum mechanical effects. It is still in use at NIST. Dec.10, 2010
b* time b space a a a* b MOLECULES
Laser beams space b time cτ a Atoms π/2 Pulses Total phase=Action integral+End splitting+Beam splitters
SUB-DOPPLER SPECTROSCOPY Absorption cell or molecular beam LASER SOURCE n, 1/l MIRROR External motion v Amplifier Detector Resonator Transmitted Intensity Internal degrees of freedom Derivative spectrum Line-center lock OPTICAL CLOCK Frequencyn
b b* b b b* a a* temps b* b espace a a a* a a* ATOMES ab
Magnetic hyperfine components of the methane line at 3.39 m exhibiting recoil doubling: The Royal Society Hall, Bordé and Uehara, PRL 1976.
E(p) ENERGY Mass 1905 p • MOMENTUM
b Recoil energy E(p) a mbc2 mac2 p//
The Royal Society SATURATION SPECTROSCOPY E(p) E(p) p p Recoil doublet
Bordé-Ramsey interferometers Laser beams Atom beam
MOLECULAR INTERFEROMETRY SF6 1981
Florence Physics Colloquium Time-domain Ramsey-Bordé interferences with cold Ca atoms Performances: incertitude relative 2.10-14< 10-15 stabilité 5. 10-17 en 1sec
First Atom Inertial sensors (1991) First atom-wave gravimeter: Kasevich and Chu 1991 First atom-wave gyro: Riehle et al. 1991 25
Florence Physics Colloquium MAGNESIUM INTERFEROMETER hn2/Mc2 l=457 nm 80 kHz
ATOMS ARE QUANTA OF A MATTER-WAVE FIELD JUST LIKE PHOTONS ARE QUANTA OF THE MAXWELL FIELD QM FOR SPACE / ONERA 2005
E(p) ENERGY Mass 1923 1905 p • MOMENTUM
KLEIN-GORDON EQUATION (Curved space-time)
Elementary interval Metric tensor Analogy with: Post-Newtonian parameters (PPN):
ATOM WAVES - Non-relativistic approximation: - Slowly-varying amplitude and phase approximation:
BASICS OF ATOM /PHOTON OPTICS Parabolic approximation of slowly varying phase and amplitude E(p) Photons p E(p) Massive particles p
BASICS OF ATOM /PHOTON OPTICS Schroedinger-like equation for the atom (photon) field: phase shift
Minimum uncertainty wave packet: velocity of the wave packet center of the wave packet width of the wave packet in momentum space complex width of the wave packet in physical space conservation of phase space volume z =
where is the classical action ABCD PROPAGATION LAW Framework valid for Hamiltonians of degree 2 in position and momentum
Ehrenfest theorem + Hamilton equations for the external motion
GENERAL FORMULA FOR THE PHASE SHIFT OF AN ATOM INTERFEROMETER k k k β 1 β 2 β N M M M β 1 β 2 β N β 1 β β β 2 N D k α N k k α 2 α 1 M M α N M α 2 α α α 1 α N D α 1 2 t t t t 2 N D 1
THE LAGRANGE INVARIANT IN ATOM OPTICS “Optical System” Space or Time The quantity: is conserved by the ABCD transformations Then the action difference cancels the mid-point phase shift
The four end-points theorem Ch. Antoine and Ch.J. Bordé, Exact phase shifts for atom interferometry, Phys. Lett. A306, 277-284 (2003) β 2 M β 1 β M α 2 α α 1 T= t - t t t 2 1 1 2
GENERAL FORMULA FOR THE PHASE SHIFT OF AN ATOM INTERFEROMETER k k k β 1 β 2 β N M M M β 1 β 2 β N β 1 β β β 2 N D k α N k k α 2 α 1 M M α N M α 2 α α α 1 α N D α 1 2
Laser beams Atoms Total phase=Action integral+End splitting+Beam splitters
References: Ch.J. Bordé, Atomic clocks and inertial sensors, Metrologia 39 (5), 435-463 (2002) Ch.J. Bordé, Theoretical tools for atom optics and interferometry, C.R. Acad. Sci. Paris, t.2, Série IV (2001) 509-530 Ch. Antoine and Ch.J. Bordé, Exact phase shifts for atom interferometry Phys. Lett. A 306 (2003) 277-284 and Quantum theory of atomic clocks and gravito-inertial sensors: an update Journ. of Optics B: Quantum and Semiclassical Optics, 5 (April 2003) 199-207 Ch.J. Bordé, Quantum theory of atom-wave beam splitters and application to multidimensional atomic gravito-inertial sensors, General Relativity and Gravitation, 36 (March 2004) Atom Interferometry, ed P. Berman, Academic Press (1997) Ch.J. Bordé, Atomic interferometry and laser spectroscopy, in Laser Spectoscopy X, World Scientific (1991) 239-245