slide1 n.
Skip this Video
Loading SlideShow in 5 Seconds..
Project FAMA: Modernization of channels for surface modification of materials PowerPoint Presentation
Download Presentation
Project FAMA: Modernization of channels for surface modification of materials

Project FAMA: Modernization of channels for surface modification of materials

199 Vues Download Presentation
Télécharger la présentation

Project FAMA: Modernization of channels for surface modification of materials

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. Project FAMA: Modernization of channels for surface modification of materials V. Alexandrov, S. Bogomolov, N. Kazarinov, V. Shevtsov JINR, Dubna, 141980, Russia P.Beličev, N. Nešković, A.Dobrosavljević Vinča Institute of Nuclear Sciences, P. O. Box 522, 11001 Belgrade, Serbia

  2. Project FAMA is related to the construction of the low energy part of TESLA Accelerator Installation (TAI) in the Vinča Institute of Nuclear Sciences (Belgrade, Serbia) and is intended for modification and analysis of materials by ion beams. FAMA includes 3 machines and 6 experimental channels. The machines are: - 14.5 GHzECR heavy ion source – the M1 machine, - a plasma source of light ions – the M2 machine, - a small isochronous cyclotron – the M3 machine.

  3. pVINIS Multicusp ECRIS M2 A scheme of the FAMA : C1 – the channel for analysis of ion beams and irradiation, C2 – the channel for surface modification of materials, mVINIS 14.5 GHzECRIS C3 – the channel for ion implantation, and C4 – the channel for deeper modification of materials.

  4. extraction electrode (puller) A three-dimensional view of the M1 machine 14.5 GHzECRIS

  5. Geometry and maximum values of fields and gradient A schematic view of the M1 channel *) Eff.radius – 419.3 mm, geometrical radius – 400 mm, bending angle 90о, entrance angle 0о, exit angle 26.6о, Rogowski type.

  6. A three-dimensional view of the C1 channel

  7. 1425.7 779 C1 Channel 170 300 479 249 334 255 282 125.7 180 target C1-SL M1-AM1 C1-SM C1-BS A schematic view of the C1 channel Geometry and maximum values of fields

  8. Some of the ion beams produced with the M1 machine

  9. 136 Xe 19+ 136 Xe 23+ Some of the ion beams spectra Kripton beam spectrum

  10. Initial particle distribution - VK Initial beam parameters XX`-plane XY-plane

  11. Particle trajectories and 14N4+ beam envelope (C1) Particle trajectories and 14N4+ beam envelope (C1) puller М1-АМ1 C1-SL M1-SL М1-АМ1

  12. 4He2+ Beam envelopes (C1) 40Ar2+

  13. On target q=19 Xenon beam Inside C1-DC q=18 Beam spot XX`-plane q=18 Beams with А > 100 need in collimation q=19 q=20

  14. Efficiency of transportation (C1)

  15. Losses in magnet A1-M1 and in channel C1 for all beams, except argon, possible avoid. • Practically there are losses for all types of beams at the beginning of M1 channel (in region of solenoid M1-SL). • At increase in current of beam and reduction of its energy these losses grow (helium and 14N4+ at energy 60 Kev) and there are losses in puller. • For elements with A<100 there is only the main charged state near target, extraneous ones are lost on the channel aperture. • For heavier elements, in particular for xenon, it is required to use the variable vertical ion beam slit (C1-BS). CONCLUSION on M1-C1 channel

  16. M1-C2 channel (heavy ions) C2-QT12 M1-AM1 C2-QT13 C2-SL

  17. C2-SLsolenoid Analysing magnetC2-MA M1-C2 channel (heavy ions) Electrostatic triplets Scanners

  18. M1-C2 channel (heavy ions) Particle trajectories of krypton beam and apertures.Interface of MCIB04 code

  19. C2 channel (heavy ions) RMS 86Kr12+, 240 keVbeam envelopes.Interface of OPTIMA code

  20. M1-C2 channel. Efficiency of transportation

  21. The loss in the triplet QT1 will exist under any adjustment and any currents of bunch. • To reduce these losses it needs to replace the first quadrupole QT11 in the triplet QT1 on solenoid. • Efficiency of transportation in channel C2 is in interval 80 - 100%. • Main losses occur in channel M1. • On example of 4He+ it is shown that efficiency of transportation possible to enlarge for smaller initial beam currents. M1-C2 channel. CONCLUSION

  22. Multicusp ECRIS pVINIS M2-C2 channel. Light ions

  23. M2-C2 channel. Light ions:gradients and voltages of elements of channel

  24. M2-C2 channel. Light ions:phase space of 2H+ on target

  25. M2-C2 channel. Light ions:passing of fractions along channel

  26. Possible provide 100% transportation through channel M2-C2 if initial beam current to reduce (in contrast with nominal) before values, provided in Table. • For light ions it is required to raise the voltages on triplet QT2 before 2 kV. M2-C2 channel. Light ions: CONCLUSION

  27. Потерь в магните М1-АМ1 и в канале С1 для всех пучков можно избежать. Для всех типов пучков есть потери в начале канала M1. При увеличении тока пучка и уменьшении его энергии потери растут. Для элементов с А < 100 в районе мишени остается только основная зарядность, посторонние теряются. Для более тяжелых элементов требуется диафрагмирование пучка. Эффективность транспортировки в канале С2 находится в интервале 80  100%. Ее можно увеличить для меньших начальных токов пучка. В канале М2-С2 можно обеспечить 100% токопрохождение для уменьшенных начальных токов пучков. Для легких ионов требуется увеличить до 2 кВ напряжения на квадруполях C2-QT21 и C2-QT22. CONCLUSION