1 / 14

A Crossover from the Universality of the Surface Roughenings with Random Relaxations

A Crossover from the Universality of the Surface Roughenings with Random Relaxations to Edwards-Wilkinson Universality. C.K.Lee and Yup Kim. Kyung-Hee Univ. DSRG. DSRG. v Abstract.

eara
Télécharger la présentation

A Crossover from the Universality of the Surface Roughenings with Random Relaxations

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A Crossover from the Universality of the Surface Roughenings with Random Relaxations to Edwards-Wilkinson Universality C.K.Lee and Yup Kim

  2. Kyung-Hee Univ. DSRG DSRG v Abstract A crossover from the Mullins-Herring (MH) universality of the surface growths with random relaxations to Edwards-Wilkinson (EW) universality is analyzed. In our model a particle in the sloped region moves downward with probability p and moves upward with probability 1-p. It is found that for the probabilities 1/2 < p < 1 the growth models follow the linear continuum growth equation with EW term and MH term. 1

  3. Kyung-Hee Univ. DSRG DSRG v Introduction ²Scaling Relations [1-2] uSurface Width uHeight-Height Correlation Function wNormal Roughening Case wSuper-Roughening Case [3-6] 2

  4. ²Continuum Equation and Conserved Growth(CG) Models uEdwards-Wikinson (EW) Equation [7] [Models] Family Model[8]. uMullins-Herring (MH) Equation[9-10] [Models] Das Sarma - Tamborenea Model [11] Larger Curvature Model [12] Restricted Curvature Model [13] Kyung-Hee Univ. DSRG DSRG 3

  5. (Average Slope m) Kyung-Hee Univ. DSRG DSRG ²Measuerment of n2[14] v Motivation 1. Nonconserved noise 를 갖는 Krug 모형이 어떠한 보편성군에 속하는지 알아본다. 2. Krug 모형에서의 확산기작은 Family 모형에서의확산기작과 같이 높이차에 의하여 결정되므로 변형된 Family 모형을 통하여 CG 모형들에서 MH 보편성군과 EW 보편성군을 구분할 수 있는 기작을 연구한다. 4

  6. 1-p p Kyung-Hee Univ. DSRG DSRG v Models ² Krug Model with Nonconserved Noise(KMNC) p=0.5 : Krug model[15] (with Conserved Noise) 1. 임의로 하나의 column x를 선택한다. 2. 만약 또는 인 조건을 만족하면 column x의 높이를 1 증가시킨다. 3. 만약 2의 조건을 만족하지 않으면 nearest neighbor column의 높이를 증가시킨다. 이때 downward probability를 p로 하고, upward probability는 1-p 로 한다. 또는 5

  7. 1-p 1-p p p Kyung-Hee Univ. DSRG DSRG ² Modified Family Model(MFM) p=1 : Family Model 1. 임의로 하나의 column x를 선택한다. 2. 만약 그리고 인 조건을 만족하면 column x의 높이를 1 증가 시킨다. 3. 만약 2의 조건을 만족하지 않으면 nearest neighbor column의 높이를 증가시킨다. 이때 downward probability를 p로 하고, upward probability는 1-p 로 한다. 또는 6

  8. Kyung-Hee Univ. DSRG DSRG vResults for KMNC & MFM (p=0.5) 7

  9. Kyung-Hee Univ. DSRG DSRG k=1.84, 2a=3.00 (MFM) k=1.75, 2a=3.00 (KMNC) ²Measuerment of n2 8

  10. Kyung-Hee Univ. DSRG DSRG vCrossover from MH to EW ²MFM (modified Family model) 3/8 1/4 p=0.55 9

  11. Kyung-Hee Univ. DSRG DSRG ²KMNC 3/8 1/4 10

  12. Kyung-Hee Univ. DSRG DSRG ²Measuerment of n2 uMFM p n2 0.55 0.025 0.60 0.062 0.65 0.65 0.70 0.80 uKMNC 11

  13. Kyung-Hee Univ. DSRG DSRG v Summary and Discussion 1. p=1/2 2.p>1/2 p의 증가에 따라 MFM 은 로의 crossover time이 점점 짧아진다. 그러나 KMNC의 경우는 crossover behavior 가 단순하지 않다. 3. P에 따른 의 변화를 보면 p>1/2 인 경우 MFM은 인 값을 가진다. 반면 KMNC의 경우p가 0.5근처에서는 가 매우 작은 값을 보여 복잡한 교차거동을 암시하고 있다. 4. p= 1/2인 경우 MH 보편성군에 속하고, p > 1/2인 경우 두 모형 모두 궁극적으로는 EW 보편성군에 속할 것이라 예상된다. 12

  14. Kyung-Hee Univ. DSRG DSRG vReferences [1] J. Krug and H. Spohn in Solids Far From Equilibrium : Growth, Morphology and Defects, edited by C. Godreche (Cambridge University Press, New York, 1991) [2] F.Famil and T. vicsek, J.Phys. A18,L75(1985) [3] J. M. Kim and J. M. Kosterlitz. Phys. Rev. Lett.62. 2289 [4] J. G. Amar, P.-M. Lam, and F. Family, Phys. Rev. E47, 3242(1993) [5] M. Schroeder, M. Siegert, D. E. Wolf, J. D. Shore, and M. Plischke, Europhys. Lett. 24, 563 (1993) [6] S. Das Sarma, S. V. Ghaisas, and J. M. Kim, Phys. Rev. E49, 122(1994) [7] S. F. Edwards, F. R. S., and D. R. Wilkinson Proc. R. Soc. Lond. A381, 17 (1982) [8] F. Family, J. Phys. A:Math. Gen. 19 (1986) [9] C. Herring, J. Appl. Phys. 21, 301 (1950) [10] W. W. Mullins, J. Appl. Phys. 28, 333 (1957); W. W. Mullins, J. Appl. Phys. 30, 77 (1959) [11] S. Das Sarma and P. I. Tamborenea, Phys. Rev. Lett. 66, 325 (1991) [12] J. M. Kim and S. Das Sarma. Phys. Rev. Lett. 72, 2903 (1994); J. M. Kim. Phys. Rev. E52. 6267 (1995) [13] J. M. Kim and S. Das Sarma, Phys. Rev. E48, 2599 (1993) [14] J. Krug, M. Plischke and M. siegert, Phys. Rev. Lett. 70, 3271 [15] J. Krug, Adv. Phys. 46, 139 (1997) 13

More Related