Créer une présentation
Télécharger la présentation

Télécharger la présentation
## Graphing Linear Equations

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -

**Graphing Linear Equations**Unit 5.08 I can graph linear equations in slope-intercept form. I can also identify and interpret the unit rate and starting point from a graph!**Put it all together!**Unit Rate Constant Rate of Change Change in y Change in x Rise Run SLOPE!**Vocabulary**Slope:The“rise over run”, describes the steepness of a line. In mathematics, we use the variable m to represent slope.**Put it all together!**Starting Point Y-Intercept!**Vocabulary**Slope:The“Rise over Run”, describes the steepness of a line. In mathematics, we use the variable m to represent slope. Y-Intercept:Where the graph of a line crosses the y-axis. In mathematics, we use the variable b to represent the y-intercept.**Vocabulary (Review)**Slope Intercept Form:A linear equation written in the form y = mx + b. dd * The slope (or unit rate) of the line is m. * The y-intercept (or starting point) is b. Example: In the equation y = ½x + 3, the slope is½and the y-intercept is3. Let’s graph this equation!**1)**y = mx + b Step 1: If we know that the y-intercept (starting point) is 3, then we can plot the point (0, 3) on the graph. Step 2: From that point, we count the “rise over run” (unit rate) of the slope to find other points on the line. Step 3: Connect the dots.**2)**y = mx + b Step 1: If we know that the y-intercept (starting point) is -5, then we can plot the point (0, -5) on the graph. Step 2: From that point, we count the “rise over run” (unit rate) of the slope to find other points on the line. Step 3: Connect the dots.**3)**y = mx + b Step 1: If we know that the y-intercept (starting point) is 0, then we can plot the point (0, 0) on the origin of the graph. Step 2: From that point, we count the “rise over run” (unit rate) of the slope to find other points on the line. Step 3: Connect the dots.**The examples so far have**all had positive slope. What would the graph of a line with negative slope look like?**4)**y = mx + b Step 1: If we know that the y-intercept (starting point) is 2, then we can plot the point (0, 2) on the graph. Step 2: From that point, we count the “rise over run” (unit rate) of the slope to find other points on the line. Step 3: Connect the dots.**5)**y = mx + b Step 1: If we know that the y-intercept (starting point) is 6, then we can plot the point (0, 6) on the graph. Step 2: From that point, we count the “rise over run” (unit rate) of the slope to find other points on the line. Step 3: Connect the dots.**Try These! **6) 7)**Homework Time! **5.08 Graphing Linear Equations WS I can graph linear equations in slope-intercept form. I can also identify and interpret the unit rate and starting point from a graph!