1.01k likes | 1.45k Vues
Chapter 3-2 Discrete Random Variables. 主講人 : 虞台文. Content. Functions of a Single Discrete Random Variable Discrete Random Vectors Independent of Random Variables Multinomial Distributions Sums of Independent Variables Generating Functions Functions of Multiple Random Variables.
E N D
Content • Functions of a Single Discrete Random Variable • Discrete Random Vectors • Independent of Random Variables • Multinomial Distributions • Sums of Independent Variables Generating Functions • Functions of Multiple Random Variables
Chapter 3-2Discrete Random Variables Functions of a Single Discrete Random Variable
計程車司機的心聲 這傢伙上車後會要跑幾公里(X)? X為一隨機變數
隨機變數之函式亦為隨機變數。 Y = g(X) 計程車司機的心聲 這傢伙上車後會要跑幾公里(X)? X為一隨機變數 Y亦為一隨機變數 這傢伙上車後我可以從他口袋掏多少錢(Y)?
Y = g(X) 若pX(x)已知, pY(y)=? 計程車司機的心聲 這傢伙上車後會要跑幾公里(X)? X為一隨機變數 Y亦為一隨機變數 這傢伙上車後我可以從他口袋掏多少錢(Y)?
The Problem Y = g(X)and pX(x)is available.
福氣啦!!! 這瓶只要五元 這瓶十元 Example 17
福氣啦!!! 這瓶只要五元 這瓶十元 Example 17
福氣啦!!! 這瓶只要五元 這瓶十元 Example 17
Example 18 n=10, p=0.2.
Example 18 n=10, p=0.2.
Example 18 n=10, p=0.2.
Pay 100$, #bottles (X3) obtained? Example 18 n=10,p=0.2.
Pay 100$, #bottles (X3) obtained? Example 18 n=10,p=0.2. Let Y (X3) denote #lucky bottles obtained.
Chapter 3-2Discrete Random Variables Discrete Random Vectors
Definition Random Vectors A discrete r-dimensional random vectorX is a function X: Rr with a finite or countable infinite image of {x1, x2, …}.
1 Example 19
2 Example 19
Definition Joint Pmf Let random vector X = (X1, X2, …, Xr). The joint pmf (jpmf) for X is defined as pX(x) = P(X1 = x1, X2 = x2, … , Xr = xr), where x = (x1, x2, … , xr).
Y X Example 20 There are three cards numbered 1, 2 and 3. Randomly draw two cards among them without replacement. Let X, Y represent the number of the 1st and 2nd card, respectively. Find the jpmf of X, Y.
Y X Example 20 There are three cards numbered 1, 2 and 3. Randomly draw two cards among them without replacement. Let X, Y represent the number of the 1st and 2nd card, respectively. Find the jpmf of X, Y.
Properties of Jpmf's • p(x) 0, x Rr; • {x | p(x) 0}is a finite or countably infinite subset ofRr;
Let X = (X1, …, Xi, …, Xr) be an r-dimensional random vectors. The ithmarginal probability mass function defined by Definition Marginal Probability Mass Functions
Y X Example 21 Find pX(x) and pY (y) of Example 20.
Y X Example 21 Find pX(x) and pY (y) of Example 20.
4 X =# Y =# • pX,Y(x, y) =? • pX(x) =?pY(y) =? • p(X < 3)= ? • p(X + Y < 4)= ? Example 22
4 pX,Y(x, y) X =# Y =# • pX,Y(x, y) =? • pX(x) =?pY(y) =? • p(X < 3)= ? • p(X + Y < 4)= ? Example 22
4 pX,Y(x, y) X =# Y =# • pX,Y(x, y) =? • pX(x) =?pY(y) =? • p(X < 3)= ? • p(X + Y < 4)= ? Example 22
4 pX,Y(x, y) X =# Y =# • pX,Y(x, y) =? • pX(x) =?pY(y) =? • p(X < 3)= ? • p(X + Y < 4)= ? Example 22
4 pX,Y(x, y) X =# Y =# • pX,Y(x, y) =? • pX(x) =?pY(y) =? • p(X < 3)= ? • p(X + Y < 4)= ? Example 22
4 pX,Y(x, y) X =# Y =# • pX,Y(x, y) =? • pX(x) =?pY(y) =? • p(X < 3)= ? • p(X + Y < 4)= ? Example 22
Chapter 3-2Discrete Random Variables Independent Random Variables
Let X1, X2, …, Xr be r discrete random variables having densities , respectively. These random variables are said to be mutually independent if their jpdf p(x1, x2, …, xr) satisfies Definition
Example 23 Tossing two dice, let X, Y represent the face values of the 1st and 2nd dice, respectively. 1. pX,Y (x, y) = ?. 2. Are X, Yindependent?
Fact ? ? ?
Fact
Example 24 Consider Example 23. Find P(X 2, Y 4).
Example 24 Z1有何意義?
Example 24 p’ p’