html5-img
1 / 14

16.360 Lecture 9

|V(z)|. +. V 0. +. | V0|. -. -3/4. -/2. -/4. |V(z)|. +. -. 2| V0|. V 0. |V(z)|. |V(z)|. +. 2| V0|. -. -3/4. -/2. -/4. +. 1/2. -. -3/4. -/2. -/4. = | V 0 | [ 1+ | | ² + 2| |cos(2  z +  r )]. 16.360 Lecture 9. Standing Wave. Special cases.

myra-hurley
Télécharger la présentation

16.360 Lecture 9

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. |V(z)| + V0 + |V0| - -3/4 -/2 -/4 |V(z)| + - 2|V0| V0 |V(z)| |V(z)| + 2|V0| - -3/4 -/2 -/4 + 1/2 - -3/4 -/2 -/4 = |V0| [1+ | |² + 2||cos(2z + r)] 16.360 Lecture 9 Standing Wave Special cases • ZL= Z0, = 0 + |V(z)| = |V0| - ZL Z0   = + ZL Z0 2. ZL= 0,short circuit, = -1 + 1/2 |V(z)| = |V0| [2 + 2cos(2z + )] 3. ZL= ,open circuit, = 1 + 1/2 |V(z)| = |V0| [2 + 2cos(2z )]

  2. + V0 Z0 jz jz -jz -jz e (e e (e 16.360 Lecture 9 short circuit line B Ii A Zg Vg(t) sc Z0 VL Zin ZL = 0 l z = - l z = 0 ZL= 0, = -1, S =  + V(z) = V0 ) - = -2jV0sin(z) + + i(z) = ) = 2V0cos(z)/Z0 V(-l) Zin = jZ0tan(l) = i(-l)

  3. + = 2V0cos(z) + V0 Z0 jz jz -jz -jz e (e e (e 16.360 Lecture 9 open circuit line B Ii A Zg Vg(t) oc Z0 VL Zin ZL =  l z = - l z = 0 ZL = ,  = 1, S =  + V(z) = V0 ) + - i(z) = ) = 2jV0sin(z)/Z0 V(-l) oc Zin = -jZ0cot(l) = i(-l)

  4. 16.360 Lecture 9 Short-Circuit/Open-Circuit Method For a line of known length l, measurements of its input impedance, one when terminated in a short and another when terminated in an open, can be used to find its characteristic impedance Z0and electrical length

  5. 16.360 Lecture 9 Line of length l = n/2 tan(l) = tan((2/)(n/2)) = 0, Zin = ZL Any multiple of half-wavelength line doesn’t modify the load impedance.

  6. (1 - ) Z0 (1 + ) -j2l -j2l e e - + (1 (1   ) ) Z0 16.360 Lecture 9 Quarter-wave transformer l = /4 + n/2 l = (2/)(/4 + n/2) = /2 , -j  e +  ) (1 Zin(-l) = = Z0 = -j  e -  (1 ) = Z0²/ZL

  7. 16.360 Lecture 9 An example: A 50- lossless tarnsmission is to be matched to a resistive load impedance with ZL = 100  via a quarter-wave section, thereby eliminating reflections along the feed line. Find the characteristic impedance of the quarter-wave tarnsformer. Z01 = 50  ZL = 100  /4 = Z0²/ZL Zin Zin = Z0²/ZL= 50  ½ ½ Z0 = (ZinZL) = (50*100)

  8. 16.360 Lecture 9 Matched transmission line: • ZL = Z0 •  = 0 • All incident power is delivered to the load.

  9. + + - V0 V0 V0 Z0 Z0 Z0 -jz jz -jz (e e e 16.360 Lecture 9 • Instantaneous power • Time-average power jz + e V(z) = V0() +  - i(z) = )  At load z = 0, the incident and reflected voltages and currents: i i + V = V0 i = r - r V = V0 i =

  10. 16.360 Lecture 9 • Instantaneous power i i i P(t) = v(t) i(t) = Re[V exp(jt)] Re[ i exp(jt)] + + + + = Re[|V0|exp(j )exp(jt)] Re[|V0|/Z0 exp(j )exp(jt)] + + = (|V0|²/Z0) cos²(t +  ) r r r P(t) = v(t) i(t) = Re[V exp(jt)] Re[ i exp(jt)] - + - + = Re[|V0|exp(j )exp(jt)] Re[|V0|/Z0 exp(j )exp(jt)] + + = - ||²(|V0|²/Z0) cos²(t +  + r)

  11. 1 T + + (|V0|²/Z0) cos²(t +  )dt 16.360 Lecture 9 • Time-average Time-domain approach: i T  T i Pav = P (t)dt = 2 0 0 + = (|V0|²/2Z0) r + Pav = -||² (|V0|²/2Z0) Net average power: i r Pav + Pav = Pav + = (1-||²) (|V0|²/2Z0)

  12. 16.360 Lecture 9 • Time-average Phasor-domain approach Pav = (½)Re[V i*] i + + + Pav = (1/2) Re[V0 V0*/Z0] = (|V0|²/2Z0) r + Pav = -||² (|V0|²/2Z0) + Pav = (1-||²) (|V0|²/2Z0)

  13. Solution of Wave Equation Wave Equation TL effect Lumped element model TL Equation l/>0.01 Wave (Input) Impedance Reflection coefficient Standing Wave Lossless TL + Complete Solution Solving for V0 Power +

More Related