1 / 65

Introduction Why is human genetics important? The human genome project On the web The human genome NCBI Other web s

Outline. Introduction Why is human genetics important? The human genome project On the web The human genome NCBI Other web sites. “Everyone carries anywhere from five to fifty significant genetic flaws, and that virtually all diseases - even AIDS - have a genetic component”.

tillie
Télécharger la présentation

Introduction Why is human genetics important? The human genome project On the web The human genome NCBI Other web s

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Outline Introduction Why is human genetics important? The human genome project On the web The human genome NCBI Other web sites

  2. “Everyone carries anywhere from five to fifty significant genetic flaws, and that virtually all diseases - even AIDS - have a genetic component” Francis Collins Director of the National Human Genome Research Institute NIH

  3. The Family History At the present time, the Family History is the powerful tool for estimating genetic risk Obtain information on children, sibs, and parents Age/date of birth Health status Age at death Cause of death This is the ‘nuclear’ family Expand as necessary to grandparents, uncles & aunts, etc.

  4. Founders I 1 2 II 3 2 1 2 3 4 5 6 III 2 1 2 3 4 5 6 IV 1 2 3 4 5 6 Proband IV - 2 V 1 2

  5. Alternative RNA splicing RNA reverse transcription Modification Transport / Release Complex formation RNA transcription Protein translation DNA replication RNA editing DNA RNA Protein

  6. rRNA tRNA iRNA Modification Transport / Release Complex formation DNA RNA Protein Function

  7. Common DNA Variants Common DNA Variants X A Y B C Z Changes In the Environment Change In the Gene Transcription Profile Change In the Protein Profile Function

  8. Genetic Susceptibility ~80% Common Gene Variation Gene + Environment Delayed onset (usually adult) Coronary Heart Disease Hypertension Diabetes Cancer Vascular Disease Genetic Variation Genetic Disease Classic Medical Genetics ~20% Single gene Chromosome Early onset (usually pediatric) Marfan Syndrome PKU Cystic Fibrosis Neurofibromatosis Down syndrome

  9. Single Nucleotide Polymorphism (SNP) TACCACGTGGACTGAGGACCCCTCTTCAGACGG TACCACGTGGACTGAGGACTCCTCTTCAGACGG

  10. Human Genome Database Components Human DNA sequence Human Transcriptome (mRNA) Variation

  11. HUMAN GENOME Size: 2900- 3200 Mb (megabases = million bp) ~ 3 X 109 bp Genes: 35,000- 40,000 (exact number not known) Other: Most of DNA non-coding (Exons contain only <1.5% of DNA) Gene distribution uneven Non-coding regions may be important Why should we be excited about the human genome? We know the entire sequence of the genome and can locate genes and variants quickly.

  12. 25,790,861 TTTTTCTCCA TGAATCTTCG TTGTGCATAT ATGATAGTAA ATTATTTATA 25,790,811 GACTGTGTAT TTGAGTCTGA TCTTTTATAA GAAGCAGGAA TCTGGGCCTA 25,790,761 CCTTATGTTC ACGTCTTTTC ATTTTCAAGA CTTTTTTTTT AAATCTTGCA 25,790,711 TATATTTTCG GTTCTAAACT GATTCTCACC ACACATCCTT TCTTCTAGGC 25,790,661 ATTGGCACAT CTCCACTTAA TAGAATATGT TGGAGAACAA ACTGCTTTGC 25,790,611 TAATAAAGGT AAAATAAATG CTATAATAGA AGGCACTCCA GCCACTGTTC 25,790,561 TTTGATTTTG TGAAAAAAAT TAAAAAAAAA AAGCACTCTG GTAAGAACAG 25,790,511 GTCCCATTAA TTATGTAAAA AGGCACAGCA GGGAACCTGT TCTATCCTGT 25,790,461 GCAGCCCAGA GATGAAGGGA GACTTTTTCC GAAGAATATG TAATTACAGA 25,790,411 TGCCTGCTCT TTTGCTTTTA GCCTTTATTT AAAGCCTGTC TGAGAAGGAG 25,790,361 TGGGATTGAC ACCAGCCTCA GTAAATGAGT GCTGCAGGCG CCCCAGCCCC 25,790,311 AGGGGTCTGC CGGGCCATCA GGTCAATGTG ACCAGTGTGC GCAGCCACCA 25,790,261 CATGGGGATG AGGGGCAGGG TCACTCTGCC TCCCCATCCA GGGGGCTGGC 25,790,211 AGGTCTGGGC ATGGCTGGGC TTTGCTGGTA GAAACCCAGC AGAGGCTCCT 25,790,161 GGTGTGGGTG TGGCCCTGGC TTGCACACCT ATGTCTGCCT TGGTCTCGTG 25,790,111 ATGGGTAAGA GGAAGGACTA ACACCCTCGG GCCCCTCTGA GTCTCGCGGC 25,790,061 TGGTGGGTCT GACCCTAAGT GCATGCGATG GAACACTGCA GCTGCTATTG 25,790,011 TCCTCCTTCC AGATGGTCCC AGAGGAGCAG CGCCTCATAG CCGCCATTGT 25,789,961 CCTGGTGGTG TGGGTCTCAG CCCTGGCGTC GTCCCTGATT GACAACATCC 25,789,911 CGTTCACTGC TACCATGGTG AGTTGCACAT GTCCATGTCG ACGGCTCAAC 25,789,861 TTTAGCCTGG ACATAGCCTG GGGCTCACCC TCCCTTCCTA AGGCAGCAGA 25,789,811 GGATGAAGCC TGCCCCTCTG CTGCACTCAC AGGTGTAGAG GACGAAAGTG 25,789,761 AGCAGAGCCC AGGGCAGCTG GGTGGGGAGT GCCGAGAGCC CAGACTGCAG 25,789,711 GCTGGGAGCC GAGGCTCTGC AGCTGCCGTG GACAGCACGT CCTGGGGTGA 25,789,661 CTGGTGATCT CGAGGTCAGC CCCACTGAGA GCTGCCACCC CTCCCAGAAA 25,789,611 AGGCTGTGCT TGCTTGCTTG CTTTCTCTCT TTCTTTCTCT TTCTTTCTTT 25,789,561 CTCTCTCTCT TTCTTTCTTT CTTTCTTTCT TTTTCTTTCT TTCTTTCTTT 25,789,511 CCTTTCTGTC TTTCCTTCCC TCCCTCCCTC CCTCCCTTCC TTCCTTCTTT 25,789,461 CCTTCCTTCC TTCCTTCCTT CTTTCCTTCC TTCCTTCTTT CCTTCCTTCC

  13. 25,790,861 TTTTTCTCCA TGAATCTTCG TTGTGCATAT ATGATAGTAA ATTATTTATA 25,790,811 GACTGTGTAT TTGAGTCTGA TCTTTTATAA GAAGCAGGAA TCTGGGCCTA 25,790,761 CCTTATGTTC ACGTCTTTTC ATTTTCAAGA CTTTTTTTTT AAATCTTGCA 25,790,711 TATATTTTCG GTTCTAAACT GATTCTCACC ACACATCCTT TCTTCTAGGC Exon 20 25,790,661 ATTGGCACAT CTCCACTTAA TAGAATATGT TGGAGAACAA ACTGCTTTGC 25,790,611 TAATAAAGGTAAAATAAATG CTATAATAGA AGGCACTCCA GCCACTGTTC Intron 20 25,790,561 TTTGATTTTG TGAAAAAAAT TAAAAAAAAA AAGCACTCTG GTAAGAACAG 25,790,511 GTCCCATTAA TTATGTAAAA AGGCACAGCA GGGAACCTGT TCTATCCTGT 25,790,461 GCAGCCCAGA GATGAAGGGA GACTTTTTCC GAAGAATATG TAATTACAGA 25,790,411 TGCCTGCTCT TTTGCTTTTA GCCTTTATTT AAAGCCTGTC TGAGAAGGAG 25,790,361 TGGGATTGAC ACCAGCCTCA GTAAATGAGT GCTGCAGGCG CCCCAGCCCC 25,790,311 AGGGGTCTGC CGGGCCATCA GGTCAATGTG ACCAGTGTGC GCAGCCACCA 25,790,261 CATGGGGATG AGGGGCAGGG TCACTCTGCC TCCCCATCCA GGGGGCTGGC 25,790,211 AGGTCTGGGC ATGGCTGGGC TTTGCTGGTA GAAACCCAGC AGAGGCTCCT 25,790,161 GGTGTGGGTG TGGCCCTGGC TTGCACACCT ATGTCTGCCT TGGTCTCGTG 25,790,111 ATGGGTAAGA GGAAGGACTA ACACCCTCGG GCCCCTCTGA GTCTCGCGGC 25,790,061 TGGTGGGTCT GACCCTAAGT GCATGCGATG GAACACTGCA GCTGCTATTG 25,790,011 TCCTCCTTCCAGATGGTCCC AGAGGAGCAG CGCCTCATAG CCGCCATTGT Exon 21 25,789,961 CCTGGTGGTG TGGGTCTCAG CCCTGGCGTC GTCCCTGATT GACAACATCC 25,789,911 CGTTCACTGC TACCATGGTGAGTTGCACAT GTCCATGTCG ACGGCTCAAC Intron 21 25,789,861 TTTAGCCTGG ACATAGCCTG GGGCTCACCC TCCCTTCCTA AGGCAGCAGA 25,789,811 GGATGAAGCC TGCCCCTCTG CTGCACTCAC AGGTGTAGAG GACGAAAGTG 25,789,761 AGCAGAGCCC AGGGCAGCTG GGTGGGGAGT GCCGAGAGCC CAGACTGCAG 25,789,711 GCTGGGAGCC GAGGCTCTGC AGCTGCCGTG GACAGCACGT CCTGGGGTGA 25,789,661 CTGGTGATCT CGAGGTCAGC CCCACTGAGA GCTGCCACCC CTCCCAGAAA 25,789,611 AGGCTGTGCT TGCTTGCTTG CTTTCTCTCT TTCTTTCTCT TTCTTTCTTT 25,789,561 CTCTCTCTCT TTCTTTCTTT CTTTCTTTCT TTTTCTTTCT TTCTTTCTTT 25,789,511 CCTTTCTGTC TTTCCTTCCC TCCCTCCCTC CCTCCCTTCC TTCCTTCTTT 25,789,461 CCTTCCTTCC TTCCTTCCTT CTTTCCTTCC TTCCTTCTTT CCTTCCTTCC

  14. 25,790,861 TTTTTCTCCA TGAATCTTCG TTGTGCATAT ATGATAGTAA ATTATTTATA 25,790,811 GACTGTGTAT TTGAGTCTGA TCTTTTATAA GAAGCAGGAA TCTGGGCCTA 25,790,761 CCTTATGTTC ACGTCTTTTC ATTTTCAAGA CTTTTTTTTT AAATCTTGCA 25,790,711 TATATTTTCG GTTCTAAACT GATTCTCACC ACACATCCTT TCTTCTAGGC Exon 20 25,790,661 ATTGGCACAT CTCCACTTAA TAGAATATGT TGGAGAACAA ACTGCTTTGC 25,790,611 TAATAAAGGTAAAATAAATG CTATAATAGA AGGCACTCCA GCCACTGTTC Intron 20 25,790,561 TTTGATTTTG TGAAAAAAAT TAAAAAAAAA AAGCACTCTG GTAAGAACAG 25,790,511 GTCCCATTAA TTATGTAAAA AGGCACAGCA GGGAACCTGT TCTATCCTGT 25,790,461 GCAGCCCAGA GATGAAGGGA GACTTTTTCC GAAGAATATG TAATTACAGA 25,790,411 TGCCTGCTCT TTTGCTTTTA GCCTTTATTT AAAGCCTGTC TGAGAAGGAG 25,790,361 TGGGATTGAC ACCAGCCTCA GTAAATGAGT GCTGCAGGCG CCCCAGCCCC 25,790,311 AGGGGTCTGC CGGGCCATCA GGTCAATGTG ACCAGTGTGC GCAGCCACCA 25,790,261 CATGGGGATG AGGGGCAGGG TCACTCTGCC TCCCCATCCA GGGGGCTGGC 25,790,211 AGGTCTGGGC ATGGCTGGGC TTTGCTGGTA GAAACCCAGC AGAGGCTCCT 25,790,161 GGTGTGGGTG TGGCCCTGGC TTGCACACCT ATGTCTGCCT TGGTCTCGTG 25,790,111 ATGGGTAAGA GGAAGGACTA ACACCCTCGG GCCCCTCTGA GTCTCGCGGC 25,790,061 TGGTGGGTCT GACCCTAAGT GCATGCGATG GAACACTGCA GCTGCTATTG 25,790,011 TCCTCCTTCCAGATGGTCCC AGAGGAGCAG CGCCTCATAG CCGCCATTGT Exon 21 rs1800417 25,789,961 CCTGGTGGTG TGGGTCTCAG CCCTGGCGTC GTCCCTGATT GACAACATCC rs1800418 25,789,911 CGTTCACTGC TACCATGGTGAGTTGCACAT GTCCATGTCG ACGGCTCAAC Intron 21rs7175046 25,789,861 TTTAGCCTGG ACATAGCCTG GGGCTCACCC TCCCTTCCTA AGGCAGCAGA 25,789,811 GGATGAAGCC TGCCCCTCTG CTGCACTCAC AGGTGTAGAG GACGAAAGTGrs12594397 25,789,761 AGCAGAGCCC AGGGCAGCTG GGTGGGGAGT GCCGAGAGCC CAGACTGCAG 25,789,711 GCTGGGAGCC GAGGCTCTGC AGCTGCCGTG GACAGCACGT CCTGGGGTGA 25,789,661 CTGGTGATCT CGAGGTCAGC CCCACTGAGA GCTGCCACCC CTCCCAGAAA 25,789,611 AGGCTGTGCT TGCTTGCTTG CTTTCTCTCT TTCTTTCTCT TTCTTTCTTT 25,789,561 CTCTCTCTCT TTCTTTCTTT CTTTCTTTCT TTTTCTTTCT TTCTTTCTTT 25,789,511 CCTTTCTGTC TTTCCTTCCC TCCCTCCCTC CCTCCCTTCC TTCCTTCTTT 25,789,461 CCTTCCTTCC TTCCTTCCTT CTTTCCTTCC TTCCTTCTTT CCTTCCTTCC

  15. Gene Structure regulatory element regulatory element CAT box TATA box 3 5 1 2 4 CATGTG TGATAACA CCAATT TATATA Protein Structure LS EGF TMR NH3 COOH CuB CuA

  16. Action of polymorphisms: Down/up regulate expression Directly affect protein function (amino acid substitution) Alter mRNA processing/stability Genetic disequilibrium with an unknown functional SNP

  17. 5,10 N5,10-methyl-THF Methylenetetrahydrofolate reductase Homocysteine is a toxic intermediate product of protein catabolism. It is removed by either the remethylation to methionine or transulfuration to cysteine.

  18. 5,10 Methylenetetrahydropholate reductase

  19. rs1801133 C to T substitution at nucleotide 677 Alanine to Valine substitution at codon 222 The altered protein is thermolabile and is associated with reduced activity resulting in increased plasma homocysteine levels

  20. TT genotypes had a diminished level of DNA methylation compared with those with the CC wildtype. The TT genotype is causally related to increased risk of coronary heart disease. The TT genotype is significantly more frequent in those with isolated cleft palate. Both hyperhomocysteinemia due to the 677T mutation and factor V Leiden are risk factors for recurrent venous thrombosis. They found that the risk of thrombosis appeared higher for individuals who had both risk factors. A positive association was found between aberrant methylation and the 677T allele. A second association of aberrant methylation was with homozygosity for the 2756G allele of methionine synthase.

  21. 5,10 Methylenetetrahydropholate reductase 677C>T – rs1801133

  22. Allelic Variation in Human Gene Expression Yan H., et al, Science 297:1143, 2002 Yan H et al. Science 297:1143, 2002

  23. Genetics = Genetic Variation BIG VARIATION Mutation that causes a big change in gene function- Pathologic mutation Single Gene Abnormalities ‘Dominant’ ‘Recessive’ Chromosomal Disorders Trisomy, Deletion Not common – usually < 1/1000 SMALL VARIATION Mutation that causes a small-to-moderate change in gene function- polymorphic variation Diseases and conditions with genetic susceptibility Common ~1/2-1/100 NOTE: Both result from mutations. Called pathologic when the effect is big, and polymorphic variation when the effect is small.

  24. The Human Genome Project and Beyond All Human Genes Identified Function & Expression Major Variation Mutations Minor Variation Polymorphisms Disease Susceptibility Therapeutic Development and Response

  25. http://www.ncbi.nlm.nih.gov/

  26. Established in 1988 as a national resource for molecular biology information, NCBI creates public databases, conducts research in computational biology, develops software tools for analyzing genome data, and disseminates biomedical information - all for the better understanding of molecular processes affecting human health and disease.

  27. All Databases NCBI Web Site ------------- PubMed Protein Nucleotide Structure Genome Books CancerChromosomes Conserved Domains 3D Domains Gene Genome Project GENSAT GEO Profiles GEO Datasets HomoloGene Journals LocusLink MeSH OMIA OMIM PMC PopSet Probe PubChem BioAssay PubChem Compound PugChem Substance SNP Taxonomy UniGene UniSTS

  28. Important databases in NCBI All Databases Everything PubMed On-line catalogue of published papers Abstracts .pdf files OMIM Information on genetic diseases SNP Common variants Gene Information on genes Map Viewer

  29. http://www.ncbi.nlm.nih.gov/

  30. British Dental Journal (2006); 200, 242. doi: 10.1038/sj.bdj.4813363 Teeth for grenades Sir, I congratulate Professor Gelbier on his series of articles on the development of dentistry in the past 125 years. However, I have to point out an error over the dates of the formation of the Armed Forces Dental Branches. The Royal Naval Dental Service was launched by Admiralty Order in Council on 22 January 1920, a year before the Army Dental Corps was authorised by Royal Warrant on 4 January 1921. The RAF Dental Service was inaugurated on 1 July 1930, although efforts to this end were started in 1925. Readers might wonder why front teeth were no longer required to fire breach-loading guns. In fact, a dental standard was introduced in 1678 for grenadiers requiring them to have sufficient front teeth to bite open the fuses of their grenades and in 1696 a similar one for musketeers to release the gunpowder in their cartridges. The removal of the front teeth of a man of military age became a punishable offence until 1856 when rim-fire and centre-fire cartridges were introduced. J. V. Holland Suffolk

  31. OMIM On-line Mendelian Inheritance in Man Victor A. McKusick, M.D. Genetic Nosology: A systematic arrangement, or classification, of diseases

More Related