1 / 44

ALJABAR BOOLE

ALJABAR BOOLE. DEFINISI PRINSIP DUALITAS FUNGSI BOOLEAN KONVERSI FUNGSI BOOLEAN. DEFINISI ALJABAR BOOLE. Sistem aljabar dengan dua operasi penjumlahan (+) dan perkalian (.) yang didefinisikan sehingga memenuhi ketentuan berikut ini :

unity-munoz
Télécharger la présentation

ALJABAR BOOLE

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ALJABAR BOOLE • DEFINISI • PRINSIP DUALITAS • FUNGSI BOOLEAN • KONVERSI FUNGSI BOOLEAN

  2. DEFINISI ALJABAR BOOLE Sistem aljabar dengan dua operasi penjumlahan (+) dan perkalian (.) yang didefinisikan sehingga memenuhi ketentuan berikut ini : • aturan A1 sampai dengan A5, M1 sampai M3, M5, D1, dan D2, • setiap elemen a, b, c dari S mempunyai sifat-sifat atau aksioma-aksioma berikut ini :

  3. PRINSIP DUALITAS Teorema 2.1 Untuk setiap elemen a, berlaku a + a = a dan a  a = a Bukti :

  4. Teorema 2.2 Untuk setiap elemen a, berlaku : a + 1 = 1 dan a  0 = 0 Bukti :

  5. Teorema 2.3 (Hukum penyerapan) Untuk setiap elemen a dan b, berlaku a + a  b = a dan a (a+b) = a Bukti :

  6. Teorema 2.4 (Hukum de Morgan) Untuk setiap elemen a dan b, berlaku : (a  b)’ = a’ + b’ dan (a + b)’ = a’ b’ Bukti :

  7. Bukti :

  8. Latihan Soal 2.1 Buktikan teorema 2.5 : a+a’b=a+b a(a’+b)=ab a + a  b = a dan a (a+b) = a Latihan Soal 2.2 Sederhanakan ekspresi berikut :

  9. a + a  b = a dan a (a+b) = a a+a’b=a+b a(a’+b)=ab Latihan Soal 2.3 Buktikan teorema 2.6 : ab+ab’=a (a+b)(a+b’)=a Latihan Soal 2.4 Sederhanakan ekspresi berikut :

  10. a + a  b = a dan a (a+b) = a Latihan Soal 2.5 Buktikan teorema 2. 7 ab+ab’c=ab+ac (a+b)(a+b’+c)=(a+b)(a+c) a+a’b=a+b a(a’+b)=ab Latihan Soal 2.6 Sederhanakan ekspresi berikut : ab+ab’=a (a+b)(a+b’)=a

  11. T2.3 : a + a  b = a a (a+b) = a T2.6 : a  b + a  b’= a (a + b)  (a + b’) = a T2.7 : (a+b)(a+b’+c)=(a+b)(a+c) a  b + a  b’  c = a  b + a  c

  12. FUNGSI BOOLEAN Misalkan x1, x2, x3, … , xn merupakan variabel-variabel aljabar Boolean. Fungsi Boolean dengan n variabel adalah fungsi yang dapat dibentuk dari aturan-aturan berikut : • fungsi konstan f(x1, x2, x3, … , xn) = a • fungsi proyeksi f(x1, x2, x3, … , xn) = xi i = 1, 2, 3, … , n • fungsi komplemen g(x1, x2, x3, … , xn) = (f(x1, x2, x3, … , xn))’ • fungsi gabungan h(x1, x2, x3, … , xn) = f(x1, x2, x3, … , xn) + g(x1, x2, x3, … , xn) h(x1, x2, x3, … , xn) = f(x1, x2, x3, … , xn) . g(x1, x2, x3, … , xn)

  13. BENTUK FUNGSI BOOLEAN Suatu fungsi Boolean dapat dinyatakan dalam bentuk yang berbeda tetapi memiliki arti yang sama Contoh : f1(x,y) = x’ . y’ f2(x,y) = (x + y)’ f1 dan f2 merupakan bentuk fungsi boolean yang sama, yaitu dengan menggunakan Hukum De Morgan.

  14. NILAI FUNGSI Fungsi Boolean dinyatakan nilainya pada setiap variabel yaitu pada setiap kombinasi (0,1). Contoh : Fungsi Boolean f(x,y) = x’y + xy’ + y’

  15. MINTERM DAN MAXTERM 21 Fungsi dua variabel : Mj = m’j

  16. 22 Fungsi tiga variabel :

  17. Contoh Soal 2.1 Dari tabel kebenaran di bawah ini, nyatakan fungsi boolean dalam bentuk SOP (sum of product) dan POS (Product of sum) KONVERSI FUNGSI BOOLEAN

  18. Jawab : Bentuk SOP SOP SOP SOP f1(x,y,z) = x’y’z + xy’z’ + xyz = m1 + m4 + m7 f1’(x,y,z)= x’y’z’ + x’yz’ + x’yz + xy’z + xyz’

  19. Jawab : Bentuk POS POS POS POS POS POS f2(x,y,z) = (x+y+z)(x+y’+z)(x+y’+z’)(x’+y+z’)(x’+y’+z) = M0 M2 M3 M5 M6 = (f1’(x,y,z))’ F (x,y,z) = m1 + m4 + m7 = M0 . M2 . M3 . M5 . M6

  20. Contoh Soal 2.2 Dari tabel kebenaran di bawah ini, nyatakan fungsi boolean dalam bentuk SOP (sum of product) dan POS (Product of sum)

  21. Jawab : Bentuk SOP SOP SOP SOP SOP SOP SOP f1(x,y,z) = x’y’z’ + x’y’z + x’yz’ + x’yz + xy’z+xyz’ = m0 + m1 + m2 + m3 + m4 + m6 f1’(x,y,z) = xy’z + xyz

  22. Jawab : Bentuk POS POS POS f2(x,y,z)= (x’ + y + z’)(x’ + y’ + z’) = (f1’(x,y,z))’ = M5. M7 F(x,y,z)= m0 + m1 + m2 + m3 + m4 + m6 = M5. M7

  23. Contoh Soal 2.3 Dari tabel kebenaran di bawah ini, nyatakan fungsi boolean dalam bentuk SOP (sum of product) dan POS (Product of sum)

  24. Jawab : Bentuk SOP SOP SOP SOP SOP f1(x,y,z) = x’yz’ + x’yz + xyz’ + xyz = m2 + m3 + m6 + m7 f1’(x,y,z)= x’y’z’ + x’y’z + xy’z’ + xy’z

  25. Jawab : Bentuk POS POS POS POS POS f2(x,y,z) = (x + y + z).(x + y + z’).(x’ + y + z).(x’ + y + z’) = (f1’(x,y,z))’= M0.M1. M4. M5 F(x,y,z) = m2 + m3 + m6 + m7 = M0.M1. M4. M5

  26. BENTUK STANDAR/KANONIK • Jika f adalah fungsi boolean satu variabel maka untuk semua nilai x berlaku : f (x) = f (1) . x + f (0) . x’ • Jika f adalah fungsi boolean dua variabel maka untuk semua nilai x berlaku : f(x,y) = f(0,0) . x’y’ + f(0,1) . x’y + f(1,0) . xy’ + f(1,1) . xy • Jika f adalah fungsi boolean tiga variabel maka untuk semua nilai x berlaku : f(x,y,z) = f(0,0,0) . x’y’ z’ + f(0,0,1) . x’y’z + f(0,1,0) . x’yz’ + f(0,1,1) . x’yz + f(1,0,0) . xy’z’ + f(1,0,1) . xy’z’ + f(1,1,0) . xyz’ + f(1,1,1) . xyz

  27. SOP SOP SOP f1(x,y,z) = f(0,0,1) x’y’z + f(1,0,0) xy’z’ + f(1,1,1) xyz = x’y’z + xy’z’ + xyz = m1 + m4 + m7

  28. KONVERSI KE BENTUK STANDAR/KANONIK 34 Contoh Soal 2.4 Cari bentuk standar dan kanonik dari f(x,y) = x’ Bentuk standar : x’y + x’ y’ Bentuk kanonik : m(0,1)  bentuk SOP

  29. Contoh Soal 2.4 Cari bentuk standar dan kanonik dari f(x,y) = x (f’(x,y))’= (x’+y’).(x’+y) = M(2,3) Bentuk standar : f(x,y) = (x’+y’).(x’+y) Bentuk kanonik :  M(2,3)  bentuk POS

  30. Contoh Soal 2.5 Cari bentuk standar dari f(x,y,z) = y’ + xy + x’yz’ Jawab : f(x,y,z) = y’ + xy + x’yz’  lengkapi literal pada tiap suku = y’(x+x’)(z+z’) + xy(z+z’) + x’yz’ = (xy’ + x’y’)(z+z’) + xyz + xyz’ + x’yz’ f(x,y,z) = xy’z + xy’z’ + x’y’z + x’y’z’ + xyz + xyz’ + x’yz’ = m5 + m4 + m1+ m0 + m7 + m6 + m2  SOP Bentuk Standar : f(x,y,z)= xy’z + xy’z’ + x’y’z + x’y’z’ + xyz + xyz’ + x’yz’ Bentuk Kanonik : f(x,y) = m(0, 1, 2, 4, 5, 6, 7) atau  POS Bentuk Standar : f(x,y,z) = x + y’ + z’ Bentuk Kanonik : f(x,y) = M(3)

  31. Contoh Soal 2.6 Cari bentuk standar dan kanonik dari f(x,y,z) = y’ + xy + x’yz 37 Bentuk Standar : f(x,y,z)= xy’z + xy’z’ + x’y’z + x’y’z’ + xyz + xyz’ + x’yz’ Bentuk Kanonik : f(x,y) = m(0, 1, 2, 4, 5, 6, 7)  SOP Bentuk Standar : f(x,y,z) = x + y’ + z’ Bentuk Kanonik : f(x,y) = M(3)  POS

  32. Latihan 1. Cari bentuk standar dari : a. f(x,y,z) = x + z, b. f(x,y,z) = z’ 2. Cari bentuk Kanonik dari : a. f(x,y) = x’y + xy’ b. f(x,y,z) = x’y’z + xy’z’ + xyz

  33. KONVERSI KE BENTUK SOP Contoh Soal 2.7 Nyatakan Fungsi Boolean f(x,y,z) = x + y’z dalam SOP Jawab : Lengkapi literal untuk setiap suku agar sama f(x,y,z) = x . (y+y’).(z+z’) + (x+x’) . y’z = (xy+xy’)(z+z’) + xy’z + x’y’z = xyz + xyz’ + xy’z + xy’z’ + xy’z + x’y’z = xyz + xyz’ + xy’z + xy’z’ + x’y’z = m7 + m6 + m5 + m4 + m1 = m(1, 4, 5, 6, 7)

  34. Contoh Soal 2.8 Nyatakan Fungsi Boolean f(x,y,z) = x’y’z + xz + yz dalam SOP Jawab : Lengkapi literal untuk setiap suku agar sama f(x,y,z) = x’y’z + xz + yz = x’y’z + x. (y+y’) . z + (x+x’) . yz = x’y’z + xyz + xy’z + xyz + x’yz = m1 + m3 + m5 + m7 = m(1, 3, 5, 7)

  35. Contoh Soal 2.9 Nyatakan Fungsi Boolean f(w,x,y,z) = wxy + yz + xy dalam SOP Jawab : Lengkapi literal untuk setiap suku agar sama f(w,x,y,z) = wxy + yz + xy = wxy . (z+z’) + (w+w’)(x+x’) . yz + (w+w’) . xy . (z+z’) = wxyz + wxyz’ + (wx+wx’+w’x+w’x’)yz + (wxy+w’xy)(z+z’) = wxyz + wxyz’ + wxyz + wx’yz + w’xyz + w’x’yz + wxyz + wxyz’ + w’xyz + w’xyz’ = w’x’yz + w’xyz’ + w’xyz + wx’yz + wxyz’ + wxyz = m(3, 6, 7, 10, 14, 15)

  36. KONVERSI KE BENTUK POS Contoh Soal 2.10 Nyatakan Fungsi Boolean f(x,y,z) = x y+ x’z dalam POS Jawab : Bentuk fungsi ke POS f(x,y,z) = xy + x’z = (xy + x’)(xy + z) distributif = (x + x’)(y + x’)(x + z)(y + z) distributif = (x’ + y)(x + z)(y + z) komplemen, identitas Lengkapi literal untuk setiap suku agar sama Suku-1  x’ + y = x’ + y + zz’ = (x’ + y + z)(x’ + y + z’) Suku-2  x + z = x + z + yy’ = (x + y + z)(x + y’ + z) Suku-3  y + z = xx’ + y + z = (x + y + z)(x’ + y + z)

  37. KONVERSI KE BENTUK POS 43 f(x,y,z) = (x’ + y)(x + z)(y + z) Lengkapi literal untuk setiap suku agar sama Suku-1  x’ + y = (x’ + y + z)(x’ + y + z’) Suku-2  x + z = (x + y + z)(x + y’ + z) Suku-3  y + z = (x + y + z)(x’ + y + z) Semua suku dengan literal lengkap : f(x,y,z) = (x’ + y)(x + z)(y + z) = (x + x’)(y + x’)(x + z)(y + z) = (x’ + y)(x + z)(y + z) = (x’+y+z)(x’+y+z’)(x+y+z)(x+y’+z)(x+y+z)(x’+y+z) = (x+y+z)(x+y’+z)(x’+y+z)(x’+y+z’) = M0 . M2 . M4 . M5 = M(0, 2, 4, 5)

  38. Contoh Soal 2.11 Nyatakan Fungsi Boolean f(x,y,z) = (x+z)(y’+z’) dalam POS Jawab : Fungsi Boolean asumsi sudah dalam bentuk POS f(x,y,z) = (x+z)(y’+z’)  lengkapi literal pada tiap suku = (x+yy’+z)(xx’+y’+z’) identitas, komplemen = (x+y+z)(x+y’+z)(x+y’+z’)(x’+y’+z’) distributif = M0 . M2 . M3 . M7

More Related