100 likes | 219 Vues
This presentation focuses on effective tools and methods for collecting, analyzing, and modeling data from various sources, including web crawling and APIs. It discusses the evolution of input and output data handling, showcasing examples from platforms like Twitter and Facebook. The talk references influential TED talks that highlight the importance of data visualization and social network analysis. Attendees will learn about Python scripting for data extraction and transformation, as well as the differences between structured and unstructured data in the ETL process.
E N D
Eddie Aronovich eddiea@cs.tau.ac.il Tools presentation
“command line” input Files Web crawling (pull) Web sensors (using API - push) “Evolution of the input”
LinkedIn MAP Gapminder - http://www.ted.com/talks/hans_rosling_shows_the_best_stats_you_ve_ever_seen.html - http://www.ted.com/talks/nicholas_christakis_the_hidden_influence_of_social_networks.html Evolution of the output (multiple dimensions)
Twitter • http://api.twitter.com/1/users/show.json?screen_name=TheMarker • Format the output (json) https://dev.twitter.com/docs/api/1/get/search • FB • /usr/bin/python fbconole.py fql("SELECT uidFROM user WHERE username='ariel.bardavid.5'" https://developers.facebook.com/docs/reference/apis/ API examples
import json from pprint import pprint json_data=open('json_data') data = json.load(json_data) pprint(data) json_data.close() Python code for json format
wget + parser (html2txt) ETL (Extract, Transform, Load) Structured vs. Unstructured data Web crawling
Scripting • bash • sed • awk • cron (and scratch space) • Hadoop • Condor Some general tools
Collect Data (and extract it) Analyze Data Build a model Run the model Collect more data Overview