1 / 54

Objectives

Objectives Explain what a network is Understand basic networking concepts and terms Explain the advantages of using a network in the home Discuss the advantages of using a network in an office Objectives (continued) Determine boundaries between networks Describe network topologies

Patman
Télécharger la présentation

Objectives

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Objectives • Explain what a network is • Understand basic networking concepts and terms • Explain the advantages of using a network in the home • Discuss the advantages of using a network in an office Hands-on Networking Fundamentals

  2. Objectives (continued) • Determine boundaries between networks • Describe network topologies • Understand general network design concepts • Design a simple LAN Hands-on Networking Fundamentals

  3. What Is a Network? • Three types of networks • Word-of-mouth communication • Telephone • Computer • Computer networks • Transmit information to person or group like word-of-mouth • Use telephone network communication infrastructure • Communication cables and radio waves • Specialized equipment to connect networks • Carry data, voice, and video communications Hands-on Networking Fundamentals

  4. What Is a Network? (continued) • Computer network components • Computer hardware and software • Print devices • Network Devices • System components linked using various media • Copper wire • Fiber-optic cables • Radio waves • Infrared waves • Microwaves • Benefit of computer networks: information sharing Hands-on Networking Fundamentals

  5. Hands-on Networking Fundamentals

  6. Removing the Mystery from Network Concepts • Master basic networking concepts • Different network types • Different terms for various network elements • Processes about how networks should work Hands-on Networking Fundamentals

  7. Understanding the Types of Networks • Three types of networks • Local area networks (LANs) • Metropolitan area networks (MANs) • Wide area networks (WANs) • LAN • Interconnects computers, printers, other equipment • Consists of shared hardware and software resources in close physical proximity • Example: University Chemistry Department Hands-on Networking Fundamentals

  8. Hands-on Networking Fundamentals

  9. Hands-on Networking Fundamentals

  10. Understanding the Types of Networks (continued) • MAN (metropolitan area network) • Spans a greater distance than a LAN • Up to 48 kilometers (about 30 miles) • Links multiple LANs within city or metropolitan region • Typically uses fiber-optic/wireless connections • LANs may be separately owned • Example: Links to Chemistry building LAN • Research hospital LAN • Pharmaceutical company LAN Hands-on Networking Fundamentals

  11. Hands-on Networking Fundamentals

  12. Understanding the Types of Networks (continued) • WAN (wide area network) • Composed of two or more LANs or MANs • Connected across distance greater than 48 km • May have constituent LANs on different continents • Enterprise network • Links different users across one or more organizations • Provides variety of resources • Used to fulfill business, research, educational tasks • Typically consists of several LANs • Example: Campus enterprise network Hands-on Networking Fundamentals

  13. Hands-on Networking Fundamentals

  14. Using Basic Networking Terms • Node (or station): network component • Personal computer, server, mainframe, minicomputer, printer, fax, CD-ROM array, disk array • Nodes linked through communications media • Wire cabling, fiber-optic cables, radio or infrared waves • Provides transmission of signals to and from nodes • Three network nodes important to users: • Workstations • Hosts • Servers Hands-on Networking Fundamentals

  15. Using Basic Networking Terms (continued) • Workstation computer • Has CPU (central processing unit) and operating system • Home to local applications such as Microsoft Office • Runs network applications to access data on server or mainframe • May fulfill roles as client and host • Client: workstation accessing data or software on another computer • Example: personal computer using Intel chip • Host: computer accessed for data or software Hands-on Networking Fundamentals

  16. Using Basic Networking Terms (continued) • Servers • Single computers offering multiuser access • Repository for software applications and data files • Host from two to as many as several thousand users • Network operating system is key to capability • Example: Microsoft Windows Server operating system • Network nodes attached to media through NIC • NIC (network interface card) • Board installed in computer or network device • Attached to communication media by connector or antenna Hands-on Networking Fundamentals

  17. Understanding Network Concepts in Historical Context • Two reasons for studying network history • Shows how practices and concepts have evolved • Provides social, political, technical context • LANs/WANs rooted in telegraph and telephone systems • Driving forces in networking technology • Interpersonal communication • Business transactions • Entertainment products Hands-on Networking Fundamentals

  18. Using a Network in a Home • Networks enrich use of computers and digital services • Three prominent uses of home networks • Sharing files and printers • Accessing the Internet and entertainment resources • Connecting home resources • Computers, entertainment devices, appliances Hands-on Networking Fundamentals

  19. Connecting Computers for Sharing Files and Printers • Share files in home by connecting computers • Example 1: Transfer files from laptop to desktop • Example 2: Cross-computer file back-up • Three common ways to share printers • Share workstation printer using operating system • Caveat: no one can use printer if workstation off • Attach printer directly to network using built-in NIC • Utilize print server with multiple connections and NIC • Plug one or more printers into print server • Connect print server to network Hands-on Networking Fundamentals

  20. Hands-on Networking Fundamentals

  21. Using Internet and Entertainment Resources • Several methods for sharing Internet connection • Internet Connection Sharing (ICS) • Configure Internet sharing in home with Windows XP • Create Internet connection with Windows XP computer • Link connected computer to network • Configure ICS in Windows XP • Can also be set up in Windows Server 2003 • Entertainment opportunities with home networks • Connects digital devices with NIC to network • Uses media hubs to connect home entertainment center Hands-on Networking Fundamentals

  22. Hands-on Networking Fundamentals

  23. Hands-on Networking Fundamentals

  24. Connecting Home Resources • Home appliances can be network devices • Example: refrigerators with digital message boards • Message boards linked to Internet • Other control features enhanced in home networks • Temperature settings • Turning music on/off • Managing lighting systems Hands-on Networking Fundamentals

  25. Using a Network in an Office • Offices greatly enhanced through networks • Networks increase productivity and lower costs Hands-on Networking Fundamentals

  26. Using a Network to Save Time and Money • Two ways networks save time and money • Share information without leaving office • Telecommute to office via home network • Example: accountant's meeting with client • Compute taxes on networked computer • Send tax documents to shared printer • Editing and compiling done by associate • Tax document returned to accountant • Meeting continues uninterrupted • Bill generated after meeting concludes Hands-on Networking Fundamentals

  27. Using a Network as a Business Strategy • Business strategy served by well-planned network • Illustrate using two companies selling specialty food • Scenario involving company one • Customer places order over the Web • Order manually transcribed to piece of paper • Data-entry clerk enters order so bill is generated • Data-entry clerk hand delivers order to inventory clerk • Inventory clerk prepares item for delivery • Turnaround time: three to five business days Hands-on Networking Fundamentals

  28. Using a Network as a Business Strategy (continued) • Scenario involving company two • Customer places order over the Web • Order automatically entered into processing server • Order-processing server generates bill • Order-processing server sends data to processing area • Inventory automatically adjusted for order • Item sent out to customer • Turnaround time: one business day • Company one handles more volume • Efficiency most likely rewarded with more orders Hands-on Networking Fundamentals

  29. Connecting Office Resources • Advantages to networking office equipment • Same as for networking home devices, but multiplied • Example of printer sharing in office of 28 people • Only three or four printers needed (centrally located) • Benefits • Save space for other activities • Reduce cost of providing print capability to office workers • Reduce cost of maintenance, e.g., cartridge replacement • Networking capabilities enhance business of any size Hands-on Networking Fundamentals

  30. Connecting Office Resources (continued) • Resources shared when connected to a network • Files • Printers • CD-ROM arrays • Network storage through disk arrays • Centralized tape or CD backups of critical files • Fax machines • Specialty printers, such as plotters • Network conferencing devices • Internet connectivity • Internet telephony Hands-on Networking Fundamentals

  31. Identifying Network Boundaries • Distinguish network types using four properties • Communications medium • Protocol • Topology • Network type (private versus public) • Examining communications medium • LAN boundaries based on communication medium changes • Boundary 1: fiber-optic cables linking wire-cable LANs • Boundary 2: medium change from fiber-optics to microwaves Hands-on Networking Fundamentals

  32. Identifying Network Boundaries (continued) • Examining protocols • Formatting and transmission of data • Discrete units of data called packets or frames • Change/addition to protocol often signals LAN boundary • Example: Ethernet and token ring protocols • Devices at boundary line convert frames or packets • Examining topology • Two components • Physical layout of network cables and devices • Logical path followed by network packets or frames • Example: Logical path of frames follows star pattern Hands-on Networking Fundamentals

  33. Identifying Network Boundaries (continued) • Examining network types • Often change at network boundary • Example: beginning/end points of public and private networks • Private networks owned and operated by organization • Public networks offer services to public • Virtual private network (VPN) • Private network tunnels through larger network • Restricted to designated member clients Hands-on Networking Fundamentals

  34. Network Topologies • Topology: physical layout combined with logical path • Cable plant: pattern of physical layout • Wired networks: cabling laid in office, building, campus • Wireless networks: types of antennas, devices, direction of transmission • Decentralized network layout • Cable between each station on network • Analogy: mountain climbers connected by a rope • Centralized network layout • Each station physically connected to central device • Analogy: star with workstation as its points Hands-on Networking Fundamentals

  35. Network Topologies (continued) • Main topologies: bus, ring, star, and mesh • Hybrid topologies: star-bus, star-ring • Selecting topology for network • Consider intended purpose • Demand for network services • Number and kinds of applications used • Network traffic (number of frames to transmit) • Connection to other networks • Security needs • Network topology influences network growth potential Hands-on Networking Fundamentals

  36. Bus Topology • Bus topology • Consists of cables connecting PCs or file servers • Visualizes connections as chain links • Terminator attached to each end of bus cable segment • Transmitting packet across bus • Detected by all nodes on segment • Given time limit to reach destination • IEEE (Institute of Electrical and Electronics Engineers) • Develops standards for network cabling, transmission • Specifies length of bus segment Hands-on Networking Fundamentals

  37. Hands-on Networking Fundamentals

  38. Bus Topology (continued) • Terminator signals end of physical segment • Functions as resistor that absorbs signal • Terminator critical on bus networks • Prevents signal reflection back on to covered path • Advantages of bus design • Requires less cable than other topologies • Easy to extend bus with a workstation • Disadvantages of bus topology • High management costs • Single defective node can take down entire network • Can become quickly congested with network traffic Hands-on Networking Fundamentals

  39. Ring Topology • Ring topology: continuous data path • Workstations attached to cable at points around ring • Transmitting data across ring topology • Goes around ring to reach destination • Continues until ends at source node • Advantages to ring topology • Easier to manage than bus • Handles high volume network better than bus • Suited to transmitting signals over long distances • Disadvantages to ring topology • More expensive to implement than bus • Fewer equipment options than bus Hands-on Networking Fundamentals

  40. Hands-on Networking Fundamentals

  41. Star Topology • Star topology: multiple nodes attached to central device (hub, switch, router) • Cable segments radiate from center like a star • Example: workstations connected to switch • Advantages of star topology • Start-up costs comparable to ring topology • Easier to manage, defective nodes quickly isolated • Easier to expand by connecting nodes or networks • Offers better equipment and high-speed options • Disadvantages of star topology • Failure of central device may cause network failure • Requires more cable than bus Hands-on Networking Fundamentals

  42. Hands-on Networking Fundamentals

  43. Hands-on Networking Fundamentals

  44. Star-Bus Hybrid Topology • Star-bus (star-wired) topology • Each radiating finger is separate logical bus segment • Each segment terminated at both ends • Advantages of star-bus topology • No exposed terminators • Connect multiple central devices to expand network • Connection between central devices is a backbone • Backbone enables high-speed communication • Central devices have built-in intelligence • Many equipment and high-speed options available Hands-on Networking Fundamentals

  45. Star-Ring Hybrid Topology • Star-ring (star-wired) topology • Hub or access unit acts as linking device • Transmission using logical communication of ring • No need for built-in terminators Hands-on Networking Fundamentals

  46. Mesh Topology • Mesh topology • Every node connected to every other node in network • Provides network with fault tolerance • Fault tolerance: built-in protection against failure • If link breaks, nodes can still communicate • Alternate communication paths increase as number of nodes increase • Mesh topology used less on LANs • Expensive to implement • Mesh topology often used in MANs and WANs Hands-on Networking Fundamentals

  47. Hands-on Networking Fundamentals

  48. Network Design Introduction • Step 1: Understand protocols, access methods, topologies • Example: Telecommunications-based WAN vs. satellite-based WAN • Step 2: Understand physical equipment used • Example: Different media for backbone and internal network • Step 3: Understand basic network design principles • Structured wiring and networking • Designing for multimedia and client/server applications • Taking advantage of LAN and WAN characteristics Hands-on Networking Fundamentals

  49. Network Design Introduction (continued) • Step 4: Assess nature of home, office, organization • Types of computers used as well as location • Software applications used and resources required • Patterns in organization relative to network use • High and low network use periods • How to simplify troubleshooting and maintenance • Determine security need for the network • Anticipate how growth affects network resources Hands-on Networking Fundamentals

  50. Designing a Simple LAN • Scenario: Office with four lawyers, one secretary • Four components of solid design • Star-bus hybrid topology • Switch connecting computes in middle of star layout • Share certain information on network • Share printers on network • Rationale for design • Star-bus economical to implement and maintain • Use of switch satisfies need for fast communication • Resource sharing using peer-to-peer network • Internet access easily added Hands-on Networking Fundamentals

More Related