1 / 49

Chapter 6

Chapter 6. Chemical Formulas. OBJECTIVES. 1. Distinguish between ionic and molecular compounds. 2. Define cation and anion and relate them to metal and nonmetal.  Molecules and Molecular Compounds 1. Molecules

Télécharger la présentation

Chapter 6

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 6 Chemical Formulas

  2. OBJECTIVES • 1. Distinguish between ionic and molecular compounds. • 2. Define cation and anion and relate them to metal and nonmetal.

  3. Molecules and Molecular Compounds 1. Molecules a. the smallest electrically neutral unit of a substance b. Made up of two or more atoms

  4. c. examples: 1. Oxygen in air: O2 2. water: H2O d. diatomic molecule: two of the same atom

  5. : seven of them hydrogen (H2) oxygen (O2) fluorine (F2) bromine (Br2) iodine (I2) nitrogen (N2) chlorine (Cl2)

  6. Molecular compounds 1. made up of molecules 2. have low melting and boiling points 3. Exist as gases or liquids at room temperature

  7. 4. composed of two nonmetals 5. examples: CO (carbon monoxide) CO2 (carbon dioxide)

  8. Ions and Ionic Compounds 1. Ions a. Atoms or group of atoms that are either + charged or – charged b. Cation: + ion lose electrons c. Anion : - ion, gain electrons : change ending to -ide

  9. d. Examples: 1. Sodium loses 1 electron Na becomes Na+1 2. Chlorine gains 1 electron Cl becomes Cl-1 chloride

  10. 2. Ionic compounds a. Consist of: cation (+), anion (-) metal, nonmetal b. Represented by a formula unit c. Solids, high melting point

  11. OBJECTIVES • 3. Distinguish between chemical formulas, molecular formulas, and formula units. • 4. Use experimental data to show that a compound obeys the law of definite proportions.

  12. Chemical formulas 1. shows symbols, subscripts 2. gives the number of atoms 3. example: Ca3N2 Ca = 3 N = 2

  13. Al2(SO4)3 Al = 2 S = 1*3 = 3 O = 4*3 = 12

  14. Molecular Compounds 1. Shows the type and number of atoms in a molecule 2. Does not show shape or how the atoms are arranged 3. NaCl , PH3

  15. Models that show arrangement of atoms 1. Structural formula H – N – H H 2. Space-filling CO2

  16. 3. Ball and stick molecular model 4. Perspective drawing

  17. Formula Units 1. represents ionic compounds 2. lowest whole-number ratio of ions 3. example: a. MgCl2 ratio is 1:2 b. AlCl3 ratio is 1:3

  18.  Law of Definite Proportions 1. Any sample of a chemical compound, the elements are always combined in the same proportion by mass ex. H2O consists: 2 hydrogen atoms, mass of 2 g 1 oxygen atom, mass of 16 g ratio 1:8

  19.  Law of multiple proportions 1. When two elements form more than one compound, the different masses of one element that combine with the same mass of the other element are in the ratio of small whole numbers 2. Examples: FeS FeS2

  20. OBJECTIVES • 5 Use the periodic table to determine the charge of an ion. • 6. Define a polyatomic ion and give the names and formulas of the most common polyatomic ions.

  21. Ionic Charges A. Monatomic ions 1. ions of one atom 2. examples: Na+ or Cl-

  22. B. Transition metals (Groups 3-12) 1. Have more than 1 positive charge 2. Charge is shown with a roman numeral 3. Examples: iron (II) and iron (III)

  23. 4. Old names a. Iron (II): ferrous ion b. Iron (III): ferric ion c. lower roman numeral ends in –ous d. Higher roman numeral ends in -ic

  24.  Polyatomic ions 1. Tightly held group of atoms acting like one ion 2. Examples: a. SO4 -2 b. NH4+1

  25. OBJECTIVES: 7. Apply the rules for naming and writing formulas for binary ionic compounds 8. Apply the rules for naming and writing formulas for ternary ionic compounds.

  26.  Ionic Compounds A. Binary compounds 1. has 2 elements 2. ALWAYS metal followed by a nonmetal

  27. B. Formula writing 1. Write the symbol and charge of the first element 2. Write the symbol and charge of the second element 3. Charges must cancel and = 0

  28. 4. Examples: a. sodium fluoride Na+1 F-1 +1-1=0 NaF b. Calcium iodide Ca+2 I-1 +2 -1 ≠ 0 CaI2

  29. c. Aluminum sulfide Al+3 S-2 +3 -2 ≠ 0 Al2S3

  30. d. Copper(II) oxide gives the charge of copper Cu+2 O-2 +2-2 =0 CuO

  31. C. Using polyatomic ions 1. tertinary – contains three different elements 2. must use ( ) if there is more than one 3. examples: a. Sodium hydroxide

  32. b. Calcium phosphate c. Ammonium sulfide

  33. D. Naming binary 1. write the name of the first element 2. write the name of the second element and change the ending to “ide” 3. Transition metals **Must include roman numerals

  34. 4. Examples: a. CaF2 Calcium fluoride b. KBr potassium bromide c. CuCl2 copper (II) chloride

  35. Objectives 9. Apply the rules for naming and writing formulas for binary molecular compounds.

  36. Writing covalent compound formulas A. Rules 1. Write the symbol and subscript of the first element.(look at prefix) 2. Write the symbol and subscript of the second element.(look at prefix)

  37. 3. prefixes **1-mono 6-hexa (only for 2nd element) 2- di 7-hepta 3-tri 8-octa 4-tetra 9-nona 5-penta 10-deca

  38. 4. Examples: a. tricarbon difluoride C3F2 b. heptabromine tetrachloride Br7Cl4

  39. B. Naming 1. Write the name of the element using the prefixes. *** Do not use mono for the 1st element 2. Write the name of the second element using prefixes, change ending to –ide.

  40. 3. Examples: a. P3O5 b. SO4 c. N2O

  41. OBJECTIVES 10. Name and write formulas for common acids.

  42.  Naming and writing acids A. Naming binary hydrides 1. use the prefix hydro- and the suffix –ic 2. HF hydrofluoric acid 3. HBr hydrobromic acid

  43. B. Writing binary hydrides 1. hydrochloric acid HCl 2. hydrosulfuric acid H2S

  44. Naming acid containing oxygen 1. use the suffixes –ous or -ic with the negative ion 2. -ous (lower oxygen state) 3. -ic (higher oxygen state) 4. examples: a. HNO3 nitric acid b. HNO2 nitrous acid

  45. c. H3PO4 phosphoric acid d. H3PO3 phosphorous acid ** If there is only one ion use –ic.

  46. Writing acids with oxygen 1. acetic acid H+1 C2H3O2-1 HC2H3O2 2. oxalic acid H+1 C2O4-2 H2C2O4

  47. Extra oxygens 1. ClO4-1perchlorate 2. ClO3-1 chlorate 3. ClO2-1 chlorite 4. ClO-1hypochlorite

  48. 5. sulfurs a. Persulfate SO5-2 b. Hyposulfite SO2-2

  49. 1. Name the following acids a. HC2H3O2 b. HI c. HNO3 d. HBr 2. Write the formulas a. Hydrophosphoric acid b. Hydrofluoric acid c. pernitric acid d. Carbonic acid Homework problems

More Related