1 / 31

SINUSOIDAL STEADY-STATE POWER CALCULATIONS

SINUSOIDAL STEADY-STATE POWER CALCULATIONS. Prepared by: Ertuğrul Eriş Reference textbook: electric Circuits, Nilsson/Riedel. Updated: November 2011. INSTANTANEOUS POWER. Zero time: the instant the current passing through a positive maximum. This reference system requires

betha
Télécharger la présentation

SINUSOIDAL STEADY-STATE POWER CALCULATIONS

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. SINUSOIDAL STEADY-STATE POWER CALCULATIONS Prepared by: Ertuğrul Eriş Reference textbook: electric Circuits, Nilsson/Riedel Updated: November 2011 Ertuğrul Eriş

  2. INSTANTANEOUS POWER Zero time: the instant the current passing through a positive maximum. This reference system requires a negative phase shift of both the voltage and current by θi. Ertuğrul Eriş

  3. SINUSOIDAL SOURCE Cos(ωt+Φ) Cos ωt Phase shift +→Left _ - →Right Ertuğrul Eriş

  4. INSTANTANEOUS POWER, AVERAGE AND REAVTIVE POWER Ertuğrul Eriş

  5. POWER First term in instantaneus Power, average Power (Real Power), constant, transformed to non electrical energy(light, heat) this energy is charged by the power companies Second and third terms in instantaneus Power, frequency doubled, related average energy over a period is zero Power factor (güç faktörü) = 0 max power cos(φ), φ=θv-θi = π/2 power (0) Ertuğrul Eriş

  6. POWER FOR PURELY RESISTIVE CIRCUITS ω=377 rad/sn, f=60 hz Amplitude, Vmİm=2 assumed Ertuğrul Eriş

  7. «LAGGING POWER» FOR PURELY INDUCTIVE CIRCUITS Reactive Power unit VAR(Volt Amper Reactive) Amplitude, Vmİm=2 assumed Ertuğrul Eriş

  8. «LEADING POWER» FOR PURELY CONDUCTIVE CIRCUITS Reactive Power unit VAR(Volt Amper Reactive) Amplitude, Vmİm=2 assumed Genlik, Vmİm=2 düşünülmüştür Ertuğrul Eriş

  9. EXAMPLE Ertuğrul Eriş

  10. RMS(ROOT MEAN SQUARE) VOLTAGE/CURRENT VALUES Ertuğrul Eriş

  11. POWER DELIVERED TO A RESISTOR «R» FOR AC AND DC SOURCES Ertuğrul Eriş

  12. EXAMPLE Ip=180mA Ertuğrul Eriş

  13. COMPLEX POWER /PHASORS Ertuğrul Eriş

  14. EXAMPLE P=8 kW V=240 V rms Pf=0.8 Complex S? Load empedance? S=8+j6 KVA Z= 5.76ej36.87=4.608+j3.456 Ertuğrul Eriş

  15. VARIOUS POWER CALCULATIONS S= VeffI*eff= (1/2)VI* Veff=Veffejθv Ieff=Ieffejθi Ertuğrul Eriş

  16. POWER CONSUMPTIONS FOR SOME HOME APPLIANCES • Heater 1-2KW • Owen 1-2KW • Refrigerator 200-250W • Washıng Machine 600-1000W • TV 100-200W • Vacuum cleaner 500-1000W • Dishwasher 700-1000W Ertuğrul Eriş

  17. ALTERNATE FORMS FOR COMPLEX POWER S=ZIeffI*eff P=|Ieff|2R=(1/2) im2 R Q=|Ieff|2X=(1/2) im2 X P= =|Veff|2/R Q= =|Veff|2/X Ertuğrul Eriş

  18. EXAMPLE-1: POWER COMPENSATION precompensatıon Vm=(R2+ω2L2)1/2 I1m φ= φv- φi=atctg(ωL/R) φ=530 cos φ=0,6 I1m =19,3 A I1eff =13,7 A Pave = 1876 Watt Preactive=2409 VAR aftercompensation C=155μF Vm=(R2+ω2L2)1/2 I1m φ=00 Cos φ=cos( φv- φ ) =1; Sin φ=0 ZL= | ZL |e j φ= | ZL |= R / (1-ω2LC)2+ ω2R2C2=25.8 Resistive! Im =12 A I1m =19,3 A Ieff =8,53 A I1eff =13,7 A Pave = 1876 Watt Preactive=0 VAR Ertuğrul Eriş

  19. EXAMPLE 2 SLoad=975+j650; Sline=25+j100; delivered power: Ss=-(1000+j750) Ertuğrul Eriş

  20. EXAMPLE 2 Ertuğrul Eriş

  21. MAXIMUM POWER TRANSFER Ertuğrul Eriş

  22. MAXIMUM POWER TRANSFER Ertuğrul Eriş

  23. EXAMPLE 1 Ertuğrul Eriş

  24. EXAMPLE 2 Ertuğrul Eriş

  25. EXAMPLE 3 a. What impedance should be connected across terminals a,b for a maximum power transfer b. What is the maximum power transferred to the impedance in (a)? c. Assume that the load is restricted to pure resistance. What size resistor connected across a,b will result in the maximum aserage power transfer? d. What is the maximum power transferred to the resistor in (c)? ig=3cos5000t A a. 20-j10; b.18W; c. 22.36Ω; d.17W Ertuğrul Eriş

  26. EXAMPLE 4 İ2(rms)=840/140 Ertuğrul Eriş

  27. PROGRAM DESIGN DEPT, PROGRAM G R A D U A T E S T U D E N T STUDENT P R OG R A M O U T C O M E S PROGRAM OUTCOMES P R OG R A M O U T C O M E S STATE, ENTREPRENEUR FIELD QALIFICATIONS EU/NATIONAL QUALIFICATIONS KNOWLEDGE SKILLS COMPETENCES NEWCOMERSTUDENT ORIENTIATION GOVERNANCE Std. questionnaire ALUMNI, PARENTS ORIENTIATION STUDENT PROFILE Std. questionnaire FACULTY NGO STUDENT, ??? CIRCICULUM ??? INTRERNAL CONSTITUENT Std. questionnaire EXTRERNAL CONSTITUENT EXTRERNAL CONSTITUENT REQUIREMENTS EU/NATIONAL FIELD QUALIFICATIONS PROGRAM OUTCOMES QUESTIONNAIRES QUALITY IMP. TOOLS GOAL: NATIONAL/INTERNATIONAL ACCREDITION

  28. BLOOM’S TAXONOMYANDERSON AND KRATHWOHL (2001) !!Listening !! Doesn’t exits in the original!!! http://www.learningandteaching.info/learning/bloomtax.htm Ertuğrul Eriş

  29. ULUSAL LİSANS YETERLİLİKLER ÇERÇEVESİ BLOOMS TAXONOMY Ertuğrul Eriş

  30. COURSE ASSESMENT MATRIX LEARNING OUTCOMES Devre Analizi İlk Ders

  31. ‘ABET’ ENGINEERING OUTCOMES Ertuğrul Eriş

More Related