1 / 15

Chapter 9 Overview

Chapter 9 Overview. Traps mechanism & RET Subroutines & JSR & JSRR & RET Interrupt mechanism & RTI. LC-3 has Memory Mapped I/O. LC-3 Memory Layout: x0000 – x00FF Trap vectors (Supports Software Interrupts) x0020 [x0400] GETC (Read Char from Keyboard)

dixon
Télécharger la présentation

Chapter 9 Overview

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 9Overview • Traps mechanism &RET • Subroutines & JSR & JSRR & RET • Interrupt mechanism & RTI

  2. LC-3 has Memory Mapped I/O LC-3 Memory Layout: x0000 – x00FF Trap vectors (Supports Software Interrupts) x0020 [x0400] GETC (Read Char from Keyboard) x0021 [x0430] OUT (Write Character to Console) x0022 [x0450] PUTS (Write string to Console) x0023 [x04A0] IN (Prompt, input character from Keyboard, echo character to Console) x0024 [x04E0] PUTSP (Write “packed” string to Console) x0025 [xFD70] HALT (Turn off run latch in MCR) x0100 – x01FF Interrupt Vectors (Supports Hardware Interrupts) x0200 – x2FFF System Programs & Data (“Operating System”) x3000 – xFDFF User Programs Area xFE00 – xFFFF I/O Programming “Registers” (Mapped I/O Registers) xFE00 KBSR [15 {Ready}, 14 {Intr enable}] (Keyboard Status Register) xFE02 KBDR [7:0{ascii data}] (Keyboard Data Register) xFE04 DSR [15{Done}, 14{Intr enable}] (Display Status Register) xFE06 DDR [7:0{ascii data}] (Display Data Register xFFFE MCR [15{Run latch}] (Machine Control Register)

  3. Trap Routine Trap Instruction: TRAP x 1111 0000 trap vector F0xx [PC ] R7 Jump to routine at trap vector address Return: RET 1100 000 111 000000 C1C0 [R7]  PC (JMP R7)

  4. Traps • Execute TRAP “vector” - Operating System Service Routines 2) Trap Vectors are at memory locations [0000:00FF] • Trap Vectors contain addresses of Trap Service Routines • [PC] is stored in R7 • Address of Trap Service Routine loaded into PC • Service Routine Program executed • Trap service routine program ends with an RET ( [R7] loaded into PC)

  5. TRAP x21 OUT Trap Vector Routine (Output Character) ; out.asm ; .ORIG x0430 ; System call starting address ST R1, SaveR1 ; R1 will be used to poll the DSR ; hardware ; ; Write the character ; TryWrite LDI R1, DSR ; Get status BRzp TryWrite ; Bit 15 on says display is ready WriteIt STI R0, DDR ; Write character ; ; return from trap ; Return LD R1, SaveR1 ; Restore registers RET ; Return from trap (JMP R7, actually) ; DSR .FILL xFE04 ; Address of display status register DDR .FILL xFE06 ; Address of display data register SaveR1 .BLKW 1 .END

  6. TRAP x23IN Trap Service Routine (Input Character) ; Service Routine for Keyboard Input ; .ORIG x04A0 START ST R1,SaveR1 ; Save the values in the registers ST R2,SaveR2 ; that are used so that they ST R3,SaveR3 ; can be restored before RET ; LD R2,Newline L1 LDI R3,DSR ; Check DDR -- is it free? BRzp L1 STI R2,DDR ; Move cursor to new clean line ; LEA R1,Prompt ; Prompt is starting address ; of prompt string Loop LDR R0,R1,#0 ; Get next prompt character BRz Input ; Check for end of prompt string L2 LDI R3,DSR BRzp L2 STI R0,DDR ; Write next character of ; prompt string ADD R1,R1,#1 ; Increment Prompt pointer BRnzp Loop ; Input LDI R3,KBSR ; Has a character been typed? BRzp Input LDI R0,KBDR ; Load it into R0 L3 LDI R3,DSR BRzp L3 STI R0,DDR ; Echo input character ; to the monitor ; L4 LDI R3,DSR BRzp L4 STI R2,DDR ; Move cursor to new clean line LD R1,SaveR1 ; Service routine done, restore LD R2,SaveR2 ; original values in registers. LD R3,SaveR3 RET ; Return from trap (i.e., JMP R7) ; SaveR1 .BLKW 1 SaveR2 .BLKW 1 SaveR3 .BLKW 1 DSR .FILL xFE04 DDR .FILL xFE06 KBSR .FILL xFE00 KBDR .FILL xFE02 Newline .FILL x000A ; ASCII code for newline Prompt .STRINGZ "Input a character>" .END

  7. TRAP x25HALT Service Routine .ORIG xFD70 ; Where this routine resides ST R7, SaveR7 ST R1, SaveR1 ; R1: a temp for MC register ST R0, SaveR0 ; R0 is used as working space ; print message that machine is halting LD R0, ASCIINewLine TRAP x21 LEA R0, Message TRAP x22 LD R0, ASCIINewLine TRAP x21 ; ; clear bit 15 at xFFFE to stop the machine ; LDI R1, MCR ; Load MC register into R1 LD R0, MASK ; R0 = x7FFF AND R0, R1, R0 ; Mask to clear the top bit STI R0, MCR ; Store R0 into MC register ; ; return from HALT routine. ; (how can this routine return if the machine is halted above?) ; LD R1, SaveR1 ; Restore registers LD R0, SaveR0 LD R7, SaveR7 RET ; JMP R7, actually ; ; Some constants ; ASCIINewLine .FILL x000A SaveR0 .BLKW 1 SaveR1 .BLKW 1 SaveR7 .BLKW 1 Message .STRINGZ "Halting the machine." MCR .FILL xFFFE ; Address of MCR MASK .FILL x7FFF ; Mask to clear the top bit .END

  8. TRAP 22 PUTS Trap Service Routine (Output a Character String) ; puts.asm ; This service routine writes a NULL-terminated string to the console. ; It services the PUTS service call (TRAP x22). ; Inputs: R0 is a pointer to the string to print. ; Context Information: R0, R1, and R3 are saved, and R7 is lost ; in the jump to this routine ; .ORIG x0450 ; Where this ISR resides ST R7, SaveR7 ; Save R7 for later return ST R0, SaveR0 ; Save other registers that ST R1, SaveR1 ; Are needed by this routine ST R3, SaveR3 ; ; ; Loop through each character in the array ; ; Loop LDR R1, R0, #0 ; Retrieve the character(s) BRz Return ; If it is 0, done L2 LDI R3,DSR BRzp L2 STI R1, DDR ; Write the character ADD R0, R0, #1 ; Increment pointer BRnzp Loop ; Do it all over again ; ; Return from the request for service call Return LD R3, SaveR3 LD R1, SaveR1 LD R0, SaveR0 LD R7, SaveR7 RET ; ; Register locations DSR .FILL xFE04 DDR .FILL xFE06 SaveR0 .FILL x0000 SaveR1 .FILL x0000 SaveR3 .FILL x0000 SaveR7 .FILL x0000 .END

  9. Programming Exercise #1 Write a program to add the contents of R0 and R1, and indicate in R2 if there was an overflow

  10. Programming Exercise #1 ; Add R3=R0+R1, R2=0 indicates no overflow ; .ORIG x3000 AND R2, R2, #0 ;Initially R2=0 (no Overflow assumed) ADD R3, R0, R1 ;R3=R0+R1 ; test for overflow ADD R0, R0, #0 ;test R0 BRN NEG ;Branch if RO negative ADD R1, R1, #0 ;test R1 BRN DONE ;No overflow if operand signs differ (R1 NEG) ADD R3, R3, #0 ;maybe, test R3 BRZP DONE ;No overflow if result sign matches (All POS) ADD R2, R2, #1 ;R2=1 indicating overflow NEG ADD R1, R1, #0 ;test R1 BRZP DONE ;No overflow if operand signs differ (R1 POS) ADD R3, R3, #0 ;maybe, test R3 BRN DONE ;No overflow if result sign matches (All NEG) ADD R2, R2, #1 ;R2=1 indicating overflow DONE HALT .END

  11. Programming Exercise #2 Write a program to count the 1’s in register R0

  12. Programming Exercise #2 ; Program to count 1's in Register R0 ; R3 is a working copy of R0 ; R1 contains the count ; R2 is a loop counter .orig x3100 ADD R3, R0, #0 ;copy R0 into R3 AND R1, R1, #0 ;clear count ADD R3, R3, #0 ;test for Neg BRZP NEXT ;count if Neg ADD R1, R1, #1 NEXT AND R2, R2, #0 ;check remaining 15 bits ADD R2, R2, #-15 LOOP ADD R3, R3, R3 ;shift R3 left BRZP AGAIN ;count if Neg ADD R1, R1, #1 AGAIN ADD R2, R2, #1 ;loop until done BRN LOOP HALT .END

  13. Programming Exercise #3 Write a program to add two, two digit numbers read from the console

  14. ; Program to add two 2 digit decimal numbers read from the console ; R1 & R2 are working registers to load 2 digit number ; R3 is first number ; R4 is second number ; R5 is the sum ; R6 is conversion offset .orig x3600 LEA R0, MESSAGE ;print message PUTS ; Get first number LD R0, NEWLINE ;print PROMPT1 OUT OUT LEA R0, PROMPT1 PUTS GETC ;get first character OUT LD R6, M30 ;convert char to hex ADD R0, R0, R6 ADD R1, R0, R0 ;R1 = 2xR0 ADD R2, R1, #0 ;copy R1 into R2 ADD R2, R2, R2 ;R2 = 4xR0 ADD R2, R2, R2 ;R2 = 8xR0 ADD R2, R2, R1 ;R2 = 10xR0 GETC ;get second character OUT ADD R0, R0, R6 ;convert to hex ADD R3, R2, R0 ;R3 = first decimal number ; Get second number LEA R0, PROMPT2 ;get first character PUTS GETC OUT ADD R0, R0, R6 ;convert char to hex ADD R1, R0, R0 ;R1 = 2xR0 ADD R2, R1, #0 ;copy R1 into R2 ADD R2, R2, R2 ;R2 = 4xR0 ADD R2, R2, R2 ;R2 = 8xR0 ADD R2, R2, R1 ;R2 = 10xR0 GETC ;get second character OUT ADD R0, R0, R6 ;convert to hex ADD R4, R2, R0 ;R4 = first decimal number Programming Exercise #3

  15. ; Add the numbers and print results ADD R5, R4, R3 ;R5 = R3 + R4 LEA R0, SUM ;prepare to print results PUTS LD R4, P100 ;find 1st digit LD R3, M100 AND R0, R0, #0 LOOP1 ADD R0, R0, #1 ADD R5, R5, R3 ;subtract 100 until negative BRZP LOOP1 ADD R5, R5, R4 ADD R0, R0, #-1 LD R6, P30 ;convert to ascii & print ADD R0, R0, R6 OUT AND R0, R0, #0 ;find 2nd digit LOOP2 ADD R0, R0, #1 ADD R5, R5, #-10 ;subtract 10 until negative BRZP LOOP2 ADD R5, R5, #10 ADD R0, R0, #-1 LD R6, P30 ;convert to ascii & print ADD R0, R0, R6 OUT ADD R0, R5, R6 ;convert and print 3rd digit OUT LD R0, NEWLINE OUT HALT MESSAGE .STRINGZ "Enter two 2-digit decimal numbers:" NEWLINE .FILL x000A PROMPT1 .STRINGZ " The sum of " PROMPT2 .STRINGZ " and " SUM .STRINGZ " is " M30 .FILL xFFD0 ;-x30 P30 .FILL X0030 ; x30 M100 .FILL xFF9C ;-100 P100 .FILL x0064 ; 100 .END Programming Exercise #3 (2)

More Related