1 / 43

Oscillators: Analysis and Designs

Oscillators: Analysis and Designs. Asst. Prof. Dr. Pipat Prommee Telecommunications Engineering Department KMITL Homepage: www.telecom.kmitl.ac.th/~pipat Email: pipat@telecom.kmitl.ac.th. H(s). K. Amplifier. Sinusoidal Oscillator Principle. Inv. Laplace. Inv. Laplace. Inv. Laplace.

hinto
Télécharger la présentation

Oscillators: Analysis and Designs

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Oscillators:Analysis and Designs Asst. Prof. Dr. Pipat Prommee Telecommunications Engineering Department KMITL Homepage: www.telecom.kmitl.ac.th/~pipat Email:pipat@telecom.kmitl.ac.th Asst .Prof. Dr.Pipat Prommee

  2. H(s) K Amplifier Sinusoidal Oscillator Principle Asst .Prof. Dr.Pipat Prommee

  3. Inv. Laplace Inv. Laplace Inv. Laplace Unstable Network Functions Asst .Prof. Dr.Pipat Prommee

  4. Double Poles Double Poles Unstable Network Functions Asst .Prof. Dr.Pipat Prommee

  5. Sinusoidal Oscillator Principle No Input condition Asst .Prof. Dr.Pipat Prommee

  6. 2nd Order Polynomial-Based Oscillator where and Asst .Prof. Dr.Pipat Prommee

  7. 3rd Order Polynomial-Based Oscillator and Asst .Prof. Dr.Pipat Prommee

  8. N - orders Cascaded Approach For Example: n =3 Asst .Prof. Dr.Pipat Prommee

  9. Oscillators Designs Asst. Prof. Dr. Pipat Prommee Asst .Prof. Dr.Pipat Prommee

  10. Example 1:Wein-Bridge Oscillator Suppose k=3, the frequency is obtained Asst .Prof. Dr.Pipat Prommee

  11. Example 2: Phase-Shift Oscillator Suppose k=-29, the Freq. is obtained Asst .Prof. Dr.Pipat Prommee

  12. Voltage-mode Lossy and Lossless Integrators Lossy Integrators Lossless Integrators Asst .Prof. Dr.Pipat Prommee

  13. Quadrature Oscillator where and Asst .Prof. Dr.Pipat Prommee

  14. 3rd Order Filter #1 3rd Order filter based on Lossy and Lossless Integrators Asst .Prof. Dr.Pipat Prommee

  15. Principle of 3rd Order Oscillator #1 [2] If Therefore Asst .Prof. Dr.Pipat Prommee

  16. OTA-based 3rd filter #1 Asst .Prof. Dr.Pipat Prommee

  17. OTA-based 3rd Oscillator #1 Asst .Prof. Dr.Pipat Prommee

  18. 3rd Order Filter #2 Asst .Prof. Dr.Pipat Prommee

  19. 3rd Order Oscillator #2[2] If Therefore Asst .Prof. Dr.Pipat Prommee

  20. Voltage Proportional Asst .Prof. Dr.Pipat Prommee

  21. OTA-based 3rd Order filter #2 Asst .Prof. Dr.Pipat Prommee

  22. OTA-based 3rd Order Oscillator #2 Asst .Prof. Dr.Pipat Prommee

  23. OTA-based 3rd Order Oscillator #2 Asst .Prof. Dr.Pipat Prommee

  24. CMOS based 3rd Order Oscillator #1 Asst .Prof. Dr.Pipat Prommee

  25. Quarature Output of 1st order Oscillator Asst .Prof. Dr.Pipat Prommee

  26. Frequency against biased current and different Cof 1st Oscillator Asst .Prof. Dr.Pipat Prommee

  27. CMOS based 3rd Order Oscillator #2 Asst .Prof. Dr.Pipat Prommee

  28. Quarature Output Signal of 2nd order Oscillator Asst .Prof. Dr.Pipat Prommee

  29. Frequency against biased current and different Cof 2nd Oscillator Asst .Prof. Dr.Pipat Prommee

  30. Current-mode Integrator based on OTA Lossy Integrators Lossless Integrators Asst .Prof. Dr.Pipat Prommee

  31. CMOS OTA Asst .Prof. Dr.Pipat Prommee

  32. Current-mode OTA Oscillator#1 [4] Asst .Prof. Dr.Pipat Prommee

  33. Current-mode OTA Oscillator #2 [4] Asst .Prof. Dr.Pipat Prommee

  34. Current-mode OTA OscillatorOutput [4] Asst .Prof. Dr.Pipat Prommee

  35. Current Controlled Current Conveyor (CCCII) [7] Asst .Prof. Dr.Pipat Prommee

  36. Ib IO Vin Y Z+ CCCII Z- X OTA against CCCII Asst .Prof. Dr.Pipat Prommee

  37. Current-mode Oscillator based on CCII[3] Asst .Prof. Dr.Pipat Prommee

  38. Oscillator outputs Asst .Prof. Dr.Pipat Prommee

  39. CCCII-based differentiator and Integrator Lossy Differentator Lossy Integrator Asst .Prof. Dr.Pipat Prommee

  40. N-order (odd) Oscillators [1] Asst .Prof. Dr.Pipat Prommee

  41. N-order (Even) Oscillators [1] Asst .Prof. Dr.Pipat Prommee

  42. Oscillation Output Asst .Prof. Dr.Pipat Prommee

  43. References • A.R. Vazquez, B.L. Barrnco, J.L. Huertas and E.S.Sinencio, “On the design of voltage-controlled sinusoidal oscillators using OTAs,” IEEE Trans. Circuits and Syst., Vol. 37, No. 2, Feb. 1990. • M. T. Abuelma’atti and M. A. Al-Qahtani, “A New Current-Controlled Multiphase SinusoidalOscillator Using Translinear Current Conveyors,” IEEE Trans. Circuits and Syst.-II, Vol. 45, No. 7, July 1998. • S.J.G. Gift, “Multiphase Sinusoidal Oscillator Using Inverting-Mode Operational Amplifiers,” IEEE Trans. Instru. and Meas., Vol. 47, No. 4, Aug. 1998. • P. Prommee, K. Dejhan,“An integrable electronic-controlled quadrature sinusoidal oscillator using CMOS operational transconductance amplifier,”International Journal of Electronics, Vol.89, no.5, pp.365-379, 2002. • S. Maheshwari and I.A. Khan, “Current controlled third order quadrature oscillator,” IEE Proc. Circuits Devices Syst., Vol. 152, No. 6, December 2005. • T. Tsukutani, Y. Sumi and Y. Fukui, “Electronically controlled current-mode oscillators using MO-OTAs and grounded capacitors,” Frequenz,Vol.60 pp.220-223, 2006. • F. Seguin and A. Fabre, “New Second Generation Current Conveyor with Reduced Parasitic Resistance and Bandpass Filter Application,” IEEE Trans. Circuits and Syst.-I, Vol. 48, No. 6, June 2001. Asst .Prof. Dr.Pipat Prommee

More Related