1 / 68

CHAPTER 6

CHAPTER 6. DATABASES AND DATA WAREHOUSES Opening Case Searching for Revenue - Google. Chapter Six Overview. SECTION 6.1 – DATABASE FUNDAMENTALS Understanding Information Database Fundamentals Database Advantages Relational Database Fundamentals Database Management Systems

kyrene
Télécharger la présentation

CHAPTER 6

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CHAPTER 6 DATABASES AND DATA WAREHOUSES Opening Case Searching for Revenue - Google

  2. Chapter Six Overview • SECTION 6.1 – DATABASE FUNDAMENTALS • Understanding Information • Database Fundamentals • Database Advantages • Relational Database Fundamentals • Database Management Systems • Integrating Data Among Multiple Databases • SECTION 6.2 – DATA WARAEHOUSE FUNDAMENTALS • Accessing Organizational Information • History of Data Warehousing • Data Warehouse Fundamentals • Business Intelligence • Data Mining

  3. SECTION 6.1 DATABASE FUNDAMENTALS

  4. LEARNING OUTCOMES • List, describe, and provide an example of each of the five characteristics of high quality information • Define the relationship between a database and a database management system • Describe the advantages an organization can gain by using a database.

  5. LEARNING OUTCOMES • Define the fundamental concepts of the relational database model • Describe the role and purpose of a database management system and list the four components of a database management system • Describe the two primary methods for integrating information across multiple databases

  6. UNDERSTANDING INFORMATION • Information is everywhere in an organization • Employees must be able to obtain and analyze the many different levels, formats, and granularities of organizational information to make decisions • Successfully collecting, compiling, sorting, and analyzing information can provide tremendous insight into how an organization is performing

  7. UNDERSTANDING INFORMATION • Information granularity – refers to the extent of detail within the information (fine and detailed or coarse and abstract) • Levels • Formats • Granularities

  8. Information Quality • Business decisions are only as good as the quality of the information used to make the decisions • Characteristics of high quality information include: • Accuracy • Completeness • Consistency • Uniqueness • Timeliness

  9. Information Quality • Low quality information example

  10. Understanding the Costs of Poor Information • The four primary sources of low quality information include: • Online customers intentionally enter inaccurate information to protect their privacy • Information from different systems have different entry standards and formats • Call center operators enter abbreviated or erroneous information by accident or to save time • Third party and external information contains inconsistencies, inaccuracies, and errors

  11. Understanding the Costs of Poor Information • Potential business effects resulting from low quality information include: • Inability to accurately track customers • Difficulty identifying valuable customers • Inability to identify selling opportunities • Marketing to nonexistent customers • Difficulty tracking revenue due to inaccurate invoices • Inability to build strong customer relationships

  12. Understanding the Benefits of Good Information • High quality information can significantly improve the chances of making a good decision • Good decisions can directly impact an organization's bottom line

  13. DATABASE FUNDAMENTALS • Information is everywhere in an organization • Information is stored in databases • Database – maintains information about various types of objects (inventory), events (transactions), people (employees), and places (warehouses)

  14. DATABASE FUNDAMENTALS • Database models include: • Hierarchical database model – information is organized into a tree-like structure (using parent/child relationships) in such a way that it cannot have too many relationships • Network database model – a flexible way of representing objects and their relationships • Relational database model – stores information in the form of logically related two-dimensional tables

  15. DATABASE ADVANTAGES • Database advantages from a business perspective include • Increased flexibility • Increased scalability and performance • Reduced information redundancy • Increased information integrity (quality) • Increased information security

  16. Increased Flexibility • A well-designed database should: • Handle changes quickly and easily • Provide users with different views • Have only one physical view • Physical view – deals with the physical storage of information on a storage device • Have multiple logical views • Logical view – focuses on how users logically access information

  17. Increased Scalability and Performance • A database must scale to meet increased demand, while maintaining acceptable performance levels • Scalability – refers to how well a system can adapt to increased demands • Performance – measures how quickly a system performs a certain process or transaction

  18. Reduced Redundancy • Databases reduce information redundancy • Redundancy – the duplication of information or storing the same information in multiple places • Inconsistency is one of the primary problems with redundant information

  19. Increased Integrity (Quality) • Information integrity – measures the quality of information • Integrity constraint – rules that help ensure the quality of information • Relational integrity constraint – rule that enforces basic and fundamental information-based constraints • Business-critical integrity constraint – rule that enforce business rules vital to an organization’s success and often require more insight and knowledge than relational integrity constraints

  20. Increased Security • Information is an organizational asset and must be protected • Databases offer several security features including: • Password – provides authentication of the user • Accesslevel – determines who has access to the different types of information • Accesscontrol – determines types of user access, such as read-only access

  21. RELATIONAL DATABASE FUNDAMENTALS • Entity – a person, place, thing, transaction, or event about which information is stored • The rows in each table contain the entities • In Figure 6.5 CUSTOMER includes Dave’s Sub Shop and Pizza Palace entities • Entity class (table) – a collection of similar entities • In Figure 6.5 CUSTOMER, ORDER, ORDER LINE, DISTRIBUTOR, and PRODUCT entity classes

  22. RELATIONAL DATABASE FUNDAMENTALS • Attributes (fields, columns) – characteristics or properties of an entity class • The columns in each table contain the attributes • In Figure 6.5 attributes for CUSTOMER include: • Customer ID • Customer Name • Contact Name • Phone

  23. RELATIONAL DATABASE FUNDAMENTALS • Primary keys and foreign keys identify the various entity classes (tables) in the database • Primary key – a field (or group of fields) that uniquely identifies a given entity in a table • Foreign key – a primary key of one table that appears an attribute in another table and acts to provide a logical relationship among the two tables

  24. Potential relational database for Coca-Cola

  25. DATABASE MANAGEMENT SYSTEMS • Database management systems (DBMS) – software through which users and application programs interact with a database

  26. DATABASE MANAGEMENT SYSTEMS • Four components of a DBMS

  27. Data Definition Component • Data definition component – creates and maintains the data dictionary and the structure of the database • The data definition component includes the data dictionary • Data dictionary – a file that stores definitions of information types, identifies the primary and foreign keys, and maintains the relationships among the tables

  28. Data Definition Component • Data dictionary essentially defines the logical properties of the information that the database contains

  29. Data Manipulation Component • Data manipulation component – allows users to create, read, update, and delete information in a database • A DBMS contains several data manipulation tools: • View – allows users to see, change, sort, and query the database content • Reportgenerator – users can define report formats • Query-by-example (QBE) – users can graphically design the answers to specific questions • Structured query language (SQL) – query language

  30. Data Manipulation Component • Sample report using Microsoft Access Report Generator

  31. Data Manipulation Component • Sample report using Access Query-By-Example (QBE) tool

  32. Data Manipulation Component • Results from the query in Figure 6.10

  33. Data Manipulation Component • SQL version of the QBE Query in Figure 6.10

  34. Application Generation and Data Administration Components • Application generation component – includes tools for creating visually appealing and easy-to-use applications • Data administration component – provides tools for managing the overall database environment by providing faculties for backup, recovery, security, and performance • IT specialists primarily use these components

  35. INTEGRATING DATA AMONG MULTIPLE DATABASES • Integration – allows separate systems to communicate directly with each other • Forward integration – takes information entered into a given system and sends it automatically to all downstream systems and processes • Backward integration – takes information entered into a given system and sends it automatically to all upstream systems and processes

  36. INTEGRATING DATAAMONG MULTIPLE DATABASES • Forward and backward integration

  37. INTEGRATING DATAAMONG MULTIPLE DATABASES • Building a central repository specifically for integrated information

  38. OPENING CASE QUESTIONSGoogle • How did the Web site RateMyProfessors.com solve its problem of low-quality information? • Review the five common characteristics of high-quality information and rank them in order of importance to Google’s business • What would be the ramifications to Google’s business if the search information it presented to its customers was of low quality?

  39. OPENING CASE QUESTIONSGoogle • Describe the different types of databases. Why should Google use a relational database? • Identify the different types of entity, entity classes, attributes, keys, and relationships that might be stored in Google’s AdWords relational database

  40. SECTION 6.2 DATA WAREHOUSE FUNDAMENTALS

  41. LEARNING OUTCOMES • Describe the roles and purposes of data warehouses and data marts in an organization • Compare the multidimensional nature of data warehouses (and data marts) with the two-dimensional nature of databases

  42. LEARNING OUTCOMES • Identify the importance of ensuring the cleanliness of information throughout an organization • Explain the relationship between business intelligence and a data warehouse

  43. HISTORY OF DATA WAREHOUSING • Data warehouses extend the transformation of data into information • In the 1990’s executives became less concerned with the day-to-day business operations and more concerned with overall business functions • The data warehouse provided the ability to support decision making without disrupting the day-to-day operations

  44. DATA WAREHOUSE FUNDAMENTALS • Data warehouse – a logical collection of information – gathered from many different operational databases – that supports business analysis activities and decision-making tasks • The primary purpose of a data warehouse is to aggregate information throughout an organization into a single repository for decision-making purposes

  45. DATA WAREHOUSE FUNDAMENTALS • Extraction, transformation, and loading (ETL) – a process that extracts information from internal and external databases, transforms the information using a common set of enterprise definitions, and loads the information into a data warehouse • Data mart – contains a subset of data warehouse information

  46. DATA WAREHOUSE FUNDAMENTALS

  47. Multidimensional Analysis • Databases contain information in a series of two-dimensional tables • In a data warehouse and data mart, information is multidimensional, it contains layers of columns and rows • Dimension – a particular attribute of information

  48. Multidimensional Analysis • Cube – common term for the representation of multidimensional information

  49. Multidimensional Analysis • Data mining – the process of analyzing data to extract information not offered by the raw data alone • To perform data mining users need data-mining tools • Data-mining tool – uses a variety of techniques to find patterns and relationships in large volumes of information and infers rules that predict future behavior and guide decision making

  50. Information Cleansing or Scrubbing • An organization must maintain high-quality data in the data warehouse • Information cleansing or scrubbing – a process that weeds out and fixes or discards inconsistent, incorrect, or incomplete information

More Related