nk cells interferons j ochotn n.
Download
Skip this Video
Loading SlideShow in 5 Seconds..
NK cells Interferons J. Ochotná PowerPoint Presentation
Download Presentation
NK cells Interferons J. Ochotná

Loading in 2 Seconds...

play fullscreen
1 / 65

NK cells Interferons J. Ochotná

103 Vues Download Presentation
Télécharger la présentation

NK cells Interferons J. Ochotná

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. NK cellsInterferonsJ. Ochotná

  2. NK cells Part of antigen non-specific mechanisms (innate) They do not have antigen-specific receptors Recognize cells that have abnormally low MHCgpI expression (some tumor and virus infected cells) They are able to kill quickly - without prior stimulation, proliferation and differentiation Activators of NK cells - IFNa, IFNb

  3. NK cells receptors • Activating receptors - Some surface lectins, Fc receptor CD16 ADCC (antibody-dependent cellular cytotoxicity) NK cells recognize cell opsonized IgG antibody through the Fc receptor CD16, this leads to the activation of cytotoxic mechanisms (NK degranulation) • Inhibitory receptors - Signals provided through these receptors inhibit the cytotoxic mechanisms (recognize MHC gpI) • Imunoglobulin family - KIR (killer inhibitor receptors) • C-type lektin family - eg CD94/NKG2

  4. NK cell cytotoxic mechanisms • The resulting reaction of NK cell after meeting with another cell depends on which signal prevail, whether activating or inhibitory signals • Cytotoxic granules contain perforin and granzyme (perforin creates pores in the cytoplasmic membrane of target cells, in some cases may cause osmotic lysis of the target cell, formed pores in the cell receiving granzymes, that cause the target cell to die by apoptosis. • Fas ligand (FasL) - which binds to the apoptotic receptor Fas (CD95) presented on the surface of many different cells • TNFa

  5. Interferons • Belongs to the humoral component of non-specific mechanisms • IFNa - produced by virus infected lymphocytes, monocytes and macrophages • IFNb - produced by virus-infected fibroblasts and epithelial cells • IFNa and IFNb - bind to receptors on the surface of infected and healthy cells and induce in them an antiviral state (synthesis of enzymes that block viral replication in the cell) • IFNg - produced by TH1 cells, has regulatory function, activates macrophages and stimulates the expression of MHCgp

  6. Basophils and mast cells and their importance in immune responses

  7. Mast cells • Mucosal mast cells - in the mucous membranes of respiratory and gastrointestinal tract, participate in parasitosis and allergy • Connective tissue mast cells - the connective tissue, in parasitosis and allergy are not participating

  8. Mast cell functions • Defense against parasitic infections • In pathological circumstances, responsible for the early type of hypersensitivity (immunopathological reaction typeI) • Apply during inflammation, in angiogenesis, in tissue remodeling • Regulation of immune response

  9. Mast cell activation • Mast cells can be stimulated to degranulate: • by direct injury (opioids, alcohols, and certain antibiotics) • cross-linking of IgE Fc receptors • anafylatoxins (C3a, C4a, C5a)

  10. Mast cell activation by cross-linking of IgE Fc receptors • Establishing of multivalent antigen (multicellular parasite) to IgE linked to highaffinnity Fc receptor for IgE (FcRI) • Aggregation of several molecules FcRI • Initiate mast cell degranulation (cytoplasmic granules mergers with the surface membrane and release their contents) • Activation of arachidonic acid metabolism (leukotriene C4, prostaglandin D2) • Start of production of cytokines (TNF, TGF, IL-4, 5,6 ...)

  11. Activation schema of mast cell

  12. Secretory products of mast cells • Cytoplasmatic granules: hydrolytic enzymes, proteoglycans (heparin, chondroitin sulphate), biogenic amines (histamine, serotonin) Histamine causes vasodilation, increased vascular permeability, erythema, edema, itching, contraction of bronchial smooth muscle, increases intestinal peristalsis, increased mucus secretion of mucosal glands in the respiratory tract and GIT (helps eliminate the parasite) • Arachidonic acid metabolites(leukotriene C4, prostaglandin D2) • Cytokines (TNF, TGF , IL-4, 5,6 ...)

  13. The role of mast cells in development of allergy

  14. Basophils • Differentiate from myeloid precursor • They are considered to be the circulating form of mast • Receptor equipment, containing granules, the mechanisms of stimulation and functions are very similar to mast cells • They are responsible for the emergence of anaphylactic shock

  15. HLA system (MHC glycoproteins)

  16. MHC glycoproteins class I (Major histocompatibility complex) • The function of MHCgpI is presentation of peptide fragments from inside the cell (which are produced by cell, including viral peptides if are present)on the cell surface so as to be recognized by T lymphocytes (cytotoxic, CD8) • Present on all nucleated cells of the organism • 3 isotypes classical human MHC gp.(HLA - A,-B,-C) • 3 isotypes non-classical MHC gp.(HLA - E,-F,-G; molecule CD1)

  17. MHC gp I structure • MHC gp class I consists of transmembrane chain a and non-covalently associated b2mikroglobulin • a chain has 3 domains, 2 N-terminal (a1, a2 - binding site for peptides) and 1 C-terminal domain (a3 - anchored in the cytoplasmic membrane, a structure similar to imunoglobulin domain)

  18. Peptide binding to MHCgpI • MHC gp I bind peptides with a length of 8 to 10 aminoacides • Certain MHC gp molecule binds peptides sharing common structural features - coupling motif (critical are aminoacides near the end of peptide)

  19. The binding of endogenous peptides occurs in the endoplasmic reticulum during biosynthesis of MHC gp I • After a chain a and b2mikroglobulin create in the ER, folding into the correct conformation and the mutual association and the association of an appropriate peptide, the complex is further processed in the Golgi apparatus and then is presented on the cell surface • Linked peptides are derived from proteins degraded by proteasome, proteasom degradate unneeded or damaged cytoplasmic proteins (labeled with ubiquitin), peptide fragments are transported into the ER by specific membrane pump TAP (transporter associated with antigen processing

  20. Binding the peptide to MHCgpI

  21. Binding the peptide to MHCgpI

  22. Non-classical MHC gpI • HLA - E,-F,-G; CD1 molecules • Structurally similar to classical MHC gp • Are less polymorphic • There are only on some cells • They specialize in binding of specific ligands

  23. HLA-E and HLA-G - occurs on the trophoblast cells • Complexes of HLA-E and HLA-G with peptides are recognized by inhibiting receptors of NK cells and contribute to the tolerance of the fetus in utero

  24. MHC glycoproteins class II • The function of MHC gpII is the presentation of peptide fragments from protein whitch are ingested by cell on the cell surface so as to be recognized by T lymphocytes (helper, CD4) • Occur on the APC (dendritic cells, monocytes, macrophages, B lymphocytes) • 3 isotypes of MHC gpII (DR, DQ, DP)

  25. MHC gp IIstructure • MHC gp II consist of 2 non-covalently associated transmembrane subunits a and b • The peptide binding site consists of N-terminal domains a1 and b1 • Binding of peptide is necessary for a stable MHC gp conformation and thus ensure its long presentation on the cell surface

  26. Peptides binding to MHC gp II • MHC gpII bind peptides with a length of 15 to 35 aminoacides (but possibly longer - because the peptide binding site is open at both ends) • Certain MHC gp molecule binds peptides sharing common structural features - coupling motif • After a string a and b are created in ER, fold into the correct conformation and the mutual associated are connected with another transmembrane chain called invariant chain, which blocks the binding site for the peptide, this complex is further processed in the Golgi apparatus, secretory vesicles isolated from GA merge with endosomes, then split the invariant chain and peptide fragments from cell absorbed proteins bind into binding site of MHC gp and the complex is then presented on cell surface

  27. Binding the peptide to MHCgpII

  28. Antigen prezentation

  29. Antigen presentation to T lymphocyte Signal:TCR– MHC gp I(II)+Ag peptid (APC) Co-stimulating signal: CD 28(T lymphocyte) – CD 80, CD 86 (APC)

  30. MHC glycoproteinspolymorphism • HLA complex is located on chromosome 6 • For MHC gp is typical high polymorphism, there are up to hundreds of different forms of alelic isotypes (except the non-classical MHC gp, and DR a chain) • Codominant inheritance of alelic forms (Individualhas 3 cell surface isotypes of HLA molecules (HLA-A,-B,-C) mostly in 2 different alelic forms) • Polymorphism has a protective significance at individual and population level • MHC gp polymorphism causes complications in transplantation

  31. HLA typing = determmination of HLA antigens on the surface of lymphocytesCarry out during the testing before transplantation and in determination of paternity • 1) Serotyping • Microlymfocytotoxic test • Allospecific serums (obtained from multiple natal to 6 weeks after birth, obtained by vaccination of volunteers, or commercially prepared sets of typing serums (monoclonal antibodies)) • Principle - the incubation of lymphocytes with typing serums in the presence of rabbit complement, then is added the vital dye which stained dead cells - cells carrying specific HLA are killed by cytotoxic Ab against the Ag, the percentage of dead cells is a measure of serum toxicity (forces and antileukocyte antibody titre) • Positive reaction is considered more than 10% dead cells (serological typing can be done also by flow cytometry

  32. 2) Molecular genetic methods • For typing are used hypervariable sections in the II. exon genes coding for HLA class II; to determine HLA class I is used polymorphism in II. and III. exon coding genes2a) PCR-SSP= Polymerase chain reaction with sequential specific primers • Extracted DNA is used as a substrate in a set of PCR reactions • Each PCR reaction contains primers pair specific for a certain allele (or group of alleles) • Positive and negative reactions are evaluated by electrophoresis, each combination of alleles has a specific electrophoretic painting

  33. 2b) PCR-SSO • PCR reaction with sequence-specific oligonucleotides Multiplication of hypervariable sections of genes coding HLA • Hybridization with enzyme or radiolabeled DNA probes specific for individual alleles 2c) PCR-SBT • Sequencing based typing • The most accurate method of HLA typing • We get the exact sequence of nucleotides, which compares with a database of known sequences of HLA alleles

  34. Immunoglobulins

  35. Immunoglobulin structure • 2 heavy (H) chains covalently linked by disulfide bonds, each H chain is connected to a light (L) chain by disulfide bonds • H chain consists of 4 to 5 domains(1 variable, 3-4 constant) • L chain consists of 2 immunoglobulin domains (1 variable, 1 constant) • Types of L chains - k, l • Types of H chains - m, d, g (g1-4) and (a1, a2), e

  36. Variable domains of L and H chain form the binding site for Ag • Hinge region where the heavy chain linked by disulfide bonds • Immunoglobulins are glykoproteins (glycosilated Fc part) • J chain • Secretory component

  37. Immunoglobulins functions • Antigen neutralization • Antigen agglutination • Complement activation (IgM, IgG) • Opsonization (IgA, IgG, IgE) • Mast cell activation using IgE • ADCC

  38. Classes of immunoglobulins and their functions • Distinguished by the constant part of H chain toIgM, IgD, IgG (IgG1 - IgG4), IgA (IgA1, IgA2), IgE • IgM - as a monomer form BCR - secreted as pentamer (10 binding sites) - first isotype that forms after the meeting with Ag - neutralization of Ag, activates complement, do not bind to Fc receptors on phagocytes - (concentration of 0.9 to 2.5 g / l; biol. half-life 6 days) • IgD - monomer form a BCR - in serum is in a very low concentration        - (0.1 g / l; biol. half-life 3 days)

  39. IgG - isotypes IgG1-IgG4 different ability of complement activation and binding to Fc receptors of phagocytes (opsonization)        - function: neutralization, opsonization, complement activation        - passes the placenta (passive imunization from the mother)        - formed in secondary immune response - (concentration of 8 to 18 g / l; biol. half-life of 21 days)

  40. IgA - mucosal IgA - protection of mucous membranes, neutralization, opsonization, do not activate complement - dimer, the secretory component - saliva, tears, breast milk - serum IgA - monomer, dimer or trimer - (Concentration of 0.9 to 3.5 g / l; biol. half-life of 6 days) • IgE - applies in defense against multicellular parasites - is the main cause of allergic reactions       - (concentration of 3x10-4 g / l; biol. half-life 2 days)

  41. The genetic basis for the development of immunoglobulin

  42. The genetic basis of the immunoglobulins development • Gene segments for H chains – on chromosome 14 V (variable) D (Diversity) J (joining) C constant domains of H chain • Gene segments for L chains - k on chromosome 2                                          - l on chromosome 22 V (variable) J (joining) C constant domain of L chain • At the ends of V, D, J segments that are signal sequences which are recognized enzyme VDJ recombinase that carry out the rearrangement of these genes • On the sides of C segments are so-called switch sequences, which are recognized by enzyme recombinase that carry out isotype switching

  43. The rearrangement of genes coding H chain 1) DJ rearrangement - excision a section IgH between D and J segment (runs on both chromosomes) 2) VD rearrangement - excision section between some V segment and DJ, if is rearrangement on some chromosome successfull, stops the regrouping on the second chromosome – it is called allelic exclusion (this is also true for L chain) Transcript of rearranged IgH gene into mRNA , splicing of the primary transcript. The first form H chain m. If rearrangement is unsuccessful, B lymphocyte die.

  44. The rearrangement of genes coding L chain 1) First, rearrange the genes encoding the L chain k, there is excision of sections between a V and J segment (simultaneously on both chromosomes), if the rearrangement is successful on one chromosomes, regrouping on the second chromosome stops – it is called allelic exclusion. 2) If regrouping of the k genes is unsuccessful, start the regrouping genes l. 3) Not all H and L chain can form together a stable dimmers. If regrouping unsuccessful, B lymphocyte die.