1 / 29

The Belle II Silicon Vertex Detector

VCI, 13 February 2013. The Belle II Silicon Vertex Detector. Markus Friedl (HEPHY Vienna) for the Belle II SVD Group. Introduction Front-End Electronics Performance Summary. Introduction Front-End Electronics Performance Summary. Belle. KEKB. Linac.

yestin
Télécharger la présentation

The Belle II Silicon Vertex Detector

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. VCI, 13 February 2013 The Belle II Silicon Vertex Detector Markus Friedl (HEPHY Vienna) forthe Belle II SVD Group

  2. Introduction Front-End Electronics Performance Summary M.Friedl (Belle II SVD Group): The Belle II SVD

  3. Introduction Front-End Electronics Performance Summary M.Friedl (Belle II SVD Group): The Belle II SVD

  4. Belle KEKB Linac KEKB and Belle @ KEK (1999-2010) • Center of mass energy: Y(4S) (10.58 GeV) • High intensity beams (1.6 A & 1.3 A) • Integrated luminosity of 1 ab-1 recorded in total • Belle mentioned explicitly in 2008 Physics Nobel Prize announcement to Kobayashi and Masukawa • Asymmetric machine:8 GeVe- on 3.5 GeVe+ Belle KEKB ~1 km in diameter Linac About 60km northeast of Tokyo M.Friedl (Belle II SVD Group): The Belle II SVD

  5. SuperKEKB/Belle II Upgrade: 2010–2015 • Aim: super-high luminosity ~81035 cm-2s-1  11010 BB / year • LoI published in 2004; TDR published in 2010 • Refurbishment of accelerator and detector required • nano-beams with cross-sections of ~10 µm x 60 nm • 10 mm radius beam pipe at interaction region http://belle2.kek.jp M.Friedl (Belle II SVD Group): The Belle II SVD

  6. Belle II VertexingSubdetectors Pixel Detector (PXD) 2 layers of DEPFET pixels Silicon Vertex Detector (SVD) 4 layers of DSSDs M.Friedl (Belle II SVD Group): The Belle II SVD

  7. Belle II Vertexing Environment • Low energy machine (10.58 GeV) – multiple scattering • Needs very low mass detector • PXD DEPFET sensors are thinned to 75 µm • SVD uses “Origami chip-on-sensor” concept • High luminosity – occupancy/pile-up • Need small sensitive area and/or fast readout • PXD has small cell size (50 x 50 µm2) • SVD has fast shaping (50 ns) and hit time reconstruction (~3 ns) • Radiation –  100 kGy • Magnetic field – 1.8 T M.Friedl (Belle II SVD Group): The Belle II SVD

  8. Silicon Vertex Detector Concept • Use largest possible (6”) double-sided sensors (DSSDs) • Minimize relative amount of structural material • Fast shaping readout • Minimize occupancy • Fast readout implies higher noise • Noise is mainly determined by input capacitance • Place readout chips as close as possible to sensor strips • Minimize capacitive load by avoiding long fanouts • Use efficient CO2 cooling • Allows thin cooling pipes M.Friedl (Belle II SVD Group): The Belle II SVD

  9. Belle II Vertex Detector • Pixel Detector – 8M pixels • 2 DEPFET layers at r = 14, 22 mm • Excellent and unambiguous spatial resolution (~15 µm) • Coarse time resolution (20 µs) • Silicon Vertex Detector – 220k strips • 4 DSSD layers at r = 38, 80, 104, 135 mm • Good spatial resolution (~12/25 µm) but ambiguities due to ghosting • Excellent time resolution (~3 ns) • Combining both parts yields a very powerful device! M.Friedl (Belle II SVD Group): The Belle II SVD

  10. Introduction Front-End Electronics Performance Summary M.Friedl (Belle II SVD Group): The Belle II SVD

  11. Front-End Geometry • 4 layers arranged in ladders • Outer 3 layers have slanted forward part • Limited acceptance angle (17°…150°) allows to place services outside (cyan cones) while minimizing material within M.Friedl (Belle II SVD Group): The Belle II SVD

  12. Double-Sided Silicon Sensors • 3 different types required • Large rectangular sensors – 123 x 58 mm2 (HPK) • Small rectangular sensors – 123 x 38 mm2 (HPK) • Trapezoidal sensors – 123 x 58…38 mm2 (Micron) • Production is in progress • Presently ~60% delivered M.Friedl (Belle II SVD Group): The Belle II SVD

  13. Origami Chip-on-Sensor Concept • Low-mass double-sided readout • Flex fanout pieces wrapped to opposite side • All chips aligned on one side  single cooling pipe (D = 1.6 mm) Side View (below) M.Friedl (Belle II SVD Group): The Belle II SVD

  14. Origami Prototype Modules • Single Origami module • Double Origami module M.Friedl (Belle II SVD Group): The Belle II SVD

  15. Sensor underneath flex circuit End ring (support) APV25 chips Origami ladder Pitch adapter bentaround sensor edge Cooling pipe M.Friedl (Belle II SVD Group): The Belle II SVD

  16. Introduction Front-End Electronics Performance Summary M.Friedl (Belle II SVD Group): The Belle II SVD

  17. General SVD Readout Scheme • Based on existing prototype system (2007) verified in lab and beam tests DATCON ONSEN Finesse Transmitter Board (FTB) FADC 1748APV25chips ~2mcoppercable Junctionbox ~10mcopper cable Unified opticaldata link (>20m) COPPER Front-endhybrids Rad-hardDC/DC converters Analog level translation,datasparsificationandhit time reconstruction Unified Belle IIDAQ system M.Friedl (Belle II SVD Group): The Belle II SVD

  18. APV25 Front-End Chip • Developedfor CMS by IC London and RAL • 70,000 chipsrunning in the CMS Trackersince 2008 • 40 MHz clock; 128 channels; 192 cellsdeep analog pipeline • 50 ns (adjustable) shaping time • 0.25 µm CMOS process (>100 MRad tolerant) • Low noise: 250 e + 36 e/pF • Multi-peakmode (read out severalsamplesalongshapingcurve) M.Friedl (Belle II SVD Group): The Belle II SVD

  19. Junction Box • CERN-made DC/DC converters for front-end powering • Comparative measurement: no noise penalty M.Friedl (Belle II SVD Group): The Belle II SVD

  20. FADC Block Diagram • Analog & digital level translation between  bias and GND • Digitization, signal conditioning (FIR filter), data processing • Central FPGA is an AlteraStratix IV GX M.Friedl (Belle II SVD Group): The Belle II SVD

  21. FADC: Overall Concept • 9U VME module (needs much space for level translation circuits) • Circuit is designed, now PCB layout is made M.Friedl (Belle II SVD Group): The Belle II SVD

  22. The “Human” Touch… M.Friedl (Belle II SVD Group): The Belle II SVD

  23. FTB: Link to DAQ and PXD • Firmware development ongoing • Optical link tests at 2.54 and 3.175 Gb/s successful • Second iteration of PCB for minor corrections underway • SVD data are also streamed to PXD for online data reduction M.Friedl (Belle II SVD Group): The Belle II SVD

  24. Introduction Front-End Electronics Performance Summary M.Friedl (Belle II SVD Group): The Belle II SVD

  25. Hit Time Reconstruction Benefits Belle I SVD • Sufficient to cope with a 40-fold increase in luminosity Belle II SVD M.Friedl (Belle II SVD Group): The Belle II SVD

  26. Achieved Hit Time Resolution • Results achieved in beam tests with several different types of Belle IIprototype modules (covering a broad range of SNR) • 2...3 ns RMSaccuracy at typical cluster SNR(14...24) • Will be donein FPGA (using lookup tables) – simulationsuccessful Close to theoretical limit (G. De Geronimo, in “Medical Imaging” by K. Iniewski) M.Friedl (Belle II SVD Group): The Belle II SVD

  27. Z Vertex Resolution • Belle II (PXD & SVD) will be a factor 2 better than Belle (SVD only) M.Friedl (Belle II SVD Group): The Belle II SVD

  28. Introduction Front-End Electronics Performance Summary M.Friedl (Belle II SVD Group): The Belle II SVD

  29. Summary • Belle II Vertex Detector consists of • Pixel Detector (PXD): unambiguous spatial resolution • Silicon Vertex Detector (SVD): precise timing • Silicon Vertex Detector • 4 layers of 6” double-sided silicon sensors • APV25 front-end chip with 50 ns shaping time • Origami chip-on-sensor readout concept for low mass • Highly efficient CO2 cooling • Schedule • R&D completed, construction has started • Now building final prototypes (pre-series) M.Friedl (Belle II SVD Group): The Belle II SVD

More Related