740 likes | 970 Vues
Speaker: Chen-Kuan Tsai Advisor: Dr. Chun-Yao Wang 2011/12/16. Static Timing Analysis for Combinational Threshold Logic Networks. Outline. Introduction Static Timing Analysis Threshold Logic Network Problem Formulation Static Timing Analysis for Combinational Threshold Logic Networks
E N D
Speaker: Chen-Kuan Tsai Advisor: Dr. Chun-Yao Wang 2011/12/16 Static Timing Analysis for Combinational Threshold Logic Networks
Outline • Introduction • Static Timing Analysis • Threshold Logic Network • Problem Formulation • Static Timing Analysis for Combinational Threshold Logic Networks • Delay model • Path Sensitization Criterion • Proposed Approach • Future Work
Static Timing Analysis • Static Timing Analysis (STA) is built on top of conservative delay modeling of gate and interconnects valid under all input patterns • Completely verify the timing of a design to meet a given timing constraint • Pros: linear runtime in size of a circuit • Cons: less accuracy, however, the accuracy can be improved
Static Timing Analysis • Critical Path Problem • Longest path problem • Naive • Structural analysis • Cons: overestimation • False path problem • Automatic detection • Path sensitization • User-specific exceptions • False path removal • Functional Timing Analysis • Static timing analysis with automatic false-path detection
Example of False Path A0 longest path delay: 6ns, true delay: 5ns 3 ns 3 ns A1 0 1 0 1 … F B0 2 ns 2 ns B1 … Select : 0 1
Terminology • Controlling Value • A logic value at any input of the gate determines the output of the gate, independent of the signal value of other inputs of the gate • Non-controlling Value • The complementary logic value of controlling value
Path Sensitization • A path is said to be sensitized when it allows a signal to propagate along it. • Static sensitization Requires all side inputs to the gate to have non-controlling value in case of blocking propagation • Cons: delay underestimation • Exact sensitization 1. f is the earliest input that holds a controlling value 2. f is the latest input which settles to a non-controlling value, given all its side inputs are also assigned to non-controlling value
Threshold Logic • A threshold function f is a multi-input function defined as shown below: f = 1 if 0if n binary inputs x1, x2, … ,xn with weights w1, w2, … ,wn a single Boolean output f a threshold value T δon and δoffrepresent the defect tolerance δon and δoffare normally assumed to be zero x1 x2 X3 X4 5 3 2 1 1 f
Features • Every Boolean function has infinitely distinct representations in the form of threshold logic • Not every Boolean function can be realized by one threshold logic gate, for example binate Boolean functions • A threshold logic function must represent a unate Boolean function. But not every unate Boolean function can be synthesized as a single threshold logic gate • In theory, every Boolean function can be realized as a compact threshold logic network, it can result in fewer nodes and a smaller network depth
Terminology • Threshold Logic Gate • A multi-terminal device implements a threshold logic function • Threshold Logic Network • A network of threshold logic gates
Example f X1 X2 X3 X4 X5 X6 X1 X2 X4 X3 X5 X6 f 5 1 3 2 1 1 1 1 1 5 5 3 2 1 1 f X1 X2 5 X3 X4 X5 X6
Problem Formulation • Given a combinational threshold logic network G with a constraint K, the number of critical paths to be reported, and a timing constraint D • Assume: all weights wi can be both negative or positive • Objective: To report at most K violated (Pd > D) critical paths and their delay in a non-increasing order of delay
Static Timing Analysis for Combinational Threshold Logic Networks • Delay model • Path Sensitization Criterion • Proposed Approach • Preprocessing • Path enumeration • Critical Path extraction
Delay model • Consider no interconnect delay • Gate delay • Target capacitive implementation (n: the number of fanin) • A normalized linear delay for n≦20 • 0.35× n + 1 • Dummy gate delay: 0
Critical Input Def: A single group threshold logic gate has a critical inputxj with its corresponding weight wj iff it satisfies where n is the number of input in this group Example: x1 x2 X3 X4 5 3 2 1 1 f
Stable Output of Threshold Logic Gates • The output signal is stabilized under the following two conditions • 1. Once the weighted sum is great than or equal to the threshold value, the output of the threshold logic gate will be stable to logic 1 • 2. Assume there are some inputs already assigned to logic 0. If one more logic-0 input arrives, and the weighted sum of the remaining inputs is less than the threshold value. The output of the threshold logic gate will be stable to logic 0 on the fly X1 X2 X3 X4 5 5 2 2 1 1 2 2 1 1 f f 1 1 X->1 X 0 X->0 X X 1 0 X1 X2 X3 X4
Dominant Input Def: A input xjdominates the threshold logic gate g while the arrival of xj’ssignal will immediately lead to a stable output of g, despite that there are still some inputs with unknown signal value. The dominant input xj exists iffg satisfies or where n is the number of input in this group and sv(xi)is the signal value of input xi
Negative weights to Positive weights A B C A’ B C • Transformation of negative weights into positive weights • Objective To ensure that all threshold logic gates have only positive weights in the given network. 2 3 -1 1 1 1 1 1 G G f f
Simple Case 1 X1 X2 X3 1 1 1 f 2 1 1 f X1 X2
Complex Case 5 4 3 2 1 1 2 2 1 1 f f X1 X2 X3 X4 X1 X2 X3 X4
Sensitization Criterion I. Multiple-group Threshold Logic Gate 1. g is the earliest input that holds the controlling value 2. g is the latest input that holds the non-controlling value, given all the other inputs are assigned to non-controlling value II. Single-group Threshold Logic Gate, all inputs are critical 1. xi is the earliest input that holds the controlling value 2. xi is the latest input that holds the non-controlling value, given all the other inputs are also non-controlling inputs III. Single-group Threshold Logic Gate, there exists an input which is not critical xiis the earliest dominant input compared to those inputs whose signal value remains unknown * assume all the weighs are positive
Example for Case III X1 0/4 1 2 3 4 4 X1 X2 X3 X4 3/7 3 2 1 1 f X2 X2 0/2 2/4 3/5 5/7 X3 X3 4/5 3/4 2/3 3/4 Sensitization candidates [1012], [0102] 1 0
Proposed Approach • Preprocess • Compute gate delay • Calculate required time • Label every threshold logic gate • Transform the given network (e.g. transform negative weights, introduce a source and a sink node, and group and decompose) • Compute the arrival time and required time, and enumerate the violated paths • Critical Path extraction • Check if path is sensitized by an ATPG-likeapproach • Stop until it meets user-defined constraints, like delay constraint and the number of reported paths • Report critical paths and their delay
Preprocess • Grouping • Objective: divide the inputs into different groups by considering the corresponding weights • Decomposition • Objective: decompose the multiple-input group to extract a dummy gate whose gate delay is 0 in order to retain the original network delay Step 1. Observe the weights to compose single-input group (An input whose weight is equal to the threshold value of the gate) Step 2. Group the remains and split into a dummy gate
Why Decomposition A B C • Example Assume that the on-input is B d(x): arrival time of x, c(g): controlling value of gate g, nc(g): non-controlling value of gate g, dc: don’t care • d(B) > d(A) => (1) A <- nc(G), C <- dc, B <- c(G) => blocked by C (2) A <- nc(G), C <- dc, B <- nc(G) => sensitized • d(B) < d(C) => B <- c(Gd), C <- nc(Gd) d(B) > d(A) => A <- nc(G) => sensitized G 3 3 2 1 1 B C 2 1 f 1 1 1 1 1 A 2 D G f 2 3 Gd 3
Why Decomposition (cont.) A B C • Example Assume that the on-input is A d(x): arrival time of x, c(g): controlling value of gate g, nc(g): non-controlling value of gate g, dc: don’t care • d(A) > d(C) > d(B) => (1) B <- nc(G), C <- nc(G), A <- dc => sensitized (2) B <- c(G), C <- c(G), A <- dc => blocked by C • d(A) > d(D) => D <- nc(G), A <- dc => B <- 0 or C <- 0 => sensitized G 3 3 2 1 3 B C 2 1 f 3 1 1 1 1 A 1 D G f 1 2 Gd 2
Example x1 x2 Y1 x3 x4 X5 X6 1. group 1 5 1 1 1 3 2 1 1 f X1 X2 X3 X4 X5 X6 X1 X2 X3 X4 X5 X6 5 5 3 2 1 1 5 5 3 2 1 1 5 5 f f 2. decompose
Example 2 3 A 2 1 1 3 2 1 4 4 1 1 3 2 3 1 1 f1 E D B C 1 3 4 5 f2 A B 2 4
Example (cont.) 1.7 2 3 A 2 1 1 3 2 1 4 4 1 1 3 2 3 1 1 f1 E D B C 1 2.4 2.05 3 4 5 2.05 f2 A B 2 4
Example (cont.) f2 1.7 0 0 0 0 0 0 2 0 2 1 1 1 1 0 0 0 0 0 0 0 0 G2 1 4 4 1 1 3 2 3 1 1 1 1 2.4 2.05 f1 G4 G1 2 0 0 4 3 1 5 f 0 2.05 E B A C D Sink Source G3 Gd1
Example (cont.) f2 1.7 0 0 0 0 0 0 2 0 2 0 0 0 0 1 1 0 1 1 0 0 0 G2 4 1 4 1 1 1 1 3 2 3 1 1 RT:7.25 2.4 2.05 f1 G4 G1 RT:8.95 RT:4.5 2 0 RT:11 0 1 3 4 5 f 0 2.05 E B D A C Sink Source G3 Gd1 RT:6.9 RT:6.9
Example (cont.) 1.7 2 A 0 2 2 1 1 0 0 1 1 f2 G2 4 1 4 1 1 3 1 1 1 1 3 2 RT:7.25 2.05 1 E D B C 2.4 3 4 C-G1, 7.4 G4 5 RT:8.95 G1 RT:4.5 f1 0 f 0 2.05 2 A B Sink 4 RT:11 G3 Gd1 RT:6.9 RT:6.9
Example (cont.) 1.7 C-G1-G2, 9.1 2 A 2 2 0 1 1 0 0 1 1 f2 G2 1 4 4 1 1 3 2 1 1 3 1 1 RT:7.25 2.05 1 E D B C 2.4 3 4 C-G1, 7.4 G4 5 RT:8.95 G1 RT:4.5 f1 0 f 0 2.05 2 A B Sink 4 RT:11 G3 Gd1 RT:6.9 RT:6.9
Example (cont.) 1.7 C-G1-G2-G4-Sink, 11.15 C-G1-G2, 9.1 2 A 2 2 0 1 1 0 0 1 1 f2 G2 1 4 4 1 1 3 2 3 1 1 1 1 RT:7.25 2.05 1 E D B C 2.4 3 4 C-G1, 7.4 G4 5 RT:8.95 G1 RT:4.5 f1 0 f 0 2.05 2 A B Sink 4 RT:11 G3 Gd1 RT:6.9 RT:6.9
Example (cont.) 1.7 C-G1-G2-G4-Sink, 11.15 C-G1-G3-G4-Sink, 11.5 C-G1-G2, 9.1 2 A 2 2 0 1 1 0 0 1 1 f2 G2 4 1 4 3 1 1 1 1 3 2 1 1 A/a: 7.4/2 2.05 1 E D B C 2.4 3 4 C-G1, 7.4 G4 5 A/a: 9.45/3.4 G1 A/a: 5/1 f1 C-G1-G3, 9.45 0 f 0 2.05 2 A B Sink 4 G3 A/a: 11.5/4.05 Gd1 A/a: 7.4/2 A/a: 4/2
Example (cont.) 1.7 C-G1-G3-G4-Sink, 11.5 C-G1-G2-G4-Sink, 11.15 C-G1-G2, 9.1 2 A X X 2 2 0 1 1 0 0 1 1 f2 G2 1 4 4 1 1 3 2 1 1 3 1 1 A/a: 7.4/2 2.05 X X X 1 E D B C X X X X 2.4 3 4 C-G1, 7.4 G4 5 A/a: 9.45/3.4 G1 A/a: 5/1 f1 C-G1-G3, 9.45 0 f 0 2.05 X X 2 A B X X Sink 4 G3 A/a: 11.5/4.05 Gd1 A/a: 7.4/2 A/a: 4/2
Example (cont.) E 1 3 4 5 0/6 1/7 4 D D 1 1 3 2 0/5 1/6 2 /7 1/6 E D B C B B B B 4/6 4/6 5/7 0/2 3/5 1/3 2/4 1/3 Sensitization candidates [1101], [1100] [0011], [0010] C C 5/5 2/2 4/4 3/3 1 0
Example (cont.) 1.7 Sensitization candidates [1101], [1100] [0011], [0010] C-G1-G3-G4-Sink, 11.5 C-G1-G2-G4-Sink, 11.15 C-G1-G2, 9.1 2 A X 1 2 2 0 0 0 1 1 1 1 f2 G2 1 4 4 3 1 1 1 1 3 2 1 1 A/a: 7.4/2 2.05 X X->1 X->1 1 E D B C X->1 X->1 X->0 X->1 2.4 3 4 C-G1, 7.4 G4 5 A/a: 9.45/3.4 G1 A/a: 5/1 f1 C-G1-G3, 9.45 0 f 0 2.05 X->1 X->0 2 A B X X->0 Sink 4 G3 A/a: 11.5/4.05 Gd1 A/a: 7.4/2 A/a: 4/2
Example (cont.) 1.7 Sensitization candidates [1101], [1100] [0011], [0010] -> A = 0 or 1 C-G1-G3-G4-Sink, 11.5 C-G1-G2-G4-Sink, 11.15 C-G1-G2, 9.1 2 A X->0 1 2 2 0 0 0 1 1 1 1 f2 G2 1 4 4 3 1 1 1 1 3 2 1 1 A/a: 7.4/2 2.05 X->0 1 1 1 E D B C 1 1 0 1 2.4 3 4 C-G1, 7.4 G4 5 A/a: 9.45/3.4 G1 A/a: 5/1 f1 C-G1-G3, 9.45 0 f 0 2.05 1 0 2 A B X->0 0 Sink 4 G3 A/a: 11.5/4.05 Gd1 A/a: 7.4/2 A/a: 4/2
Example (cont.) 1.7 Sensitization candidates [1101], [1100] [0011], [0010] -> A = 0 or 1 C-G1-G3-G4-Sink, 11.5 C-G1-G2-G4-Sink, 11.15 C-G1-G2, 9.1 2 A 0 1 2 2 0 0 0 1 1 1 1 f2 G2 1 4 4 3 1 1 1 1 3 2 1 1 A/a: 7.4/2 2.05 0 1 1 1 E D B C 1 1 0 1 2.4 3 4 C-G1, 7.4 G4 5 A/a: 9.45/3.4 G1 A/a: 5/1 f1 C-G1-G3, 9.45 0 f 0 2.05 1 0 2 A B 0 0 Sink 4 G3 A/a: 11.5/4.05 Gd1 A/a: 7.4/2 A/a: 4/2
Example (cont.) G2 3.7 7.4 9.45 3/5 0/2 4 G1 3 1 1 4/5 3/4 G2 G1 G3 G3 3/3 4/4 Sensitization candidates [101], [100] 1 0
Example (cont.) 1.7 Sensitization candidates [1101], [1100] [0011], [0010] -> A = 0 or 1 -> [101], [100] C-G1-G3-G4-Sink, 11.5 C-G1-G2-G4-Sink, 11.15 C-G1-G2, 9.1 2 A 0 1 2 2 0 0 0 1 1 1 1 f2 G2 1 4 4 3 1 1 1 1 3 2 1 1 A/a: 7.4/2 2.05 0 1 1 1 E D B C 1 1 0 1 2.4 3 4 C-G1, 7.4 G4 5 A/a: 9.45/3.4 G1 A/a: 5/1 f1 C-G1-G3, 9.45 0 f 0 2.05 1 0 2 A B 0 0 Sink 4 G3 A/a: 11.5/4.05 Gd1 A/a: 7.4/2 A/a: 4/2
Example (cont.) 1.7 Sensitization candidates [1101], [1100] [0011], [0010] -> A = 0 or 1 C-G1-G3-G4-Sink, 11.5 C-G1-G2-G4-Sink, 11.15 C-G1-G2, 9.1 2 A 0->1 1 2 2 X X X 1 1 1 1 f2 G2 1 4 4 3 1 1 1 1 3 2 1 1 A/a: 7.4/2 2.05 1 1 1 1 E D B C 1 1 0 1 2.4 3 4 C-G1, 7.4 G4 5 A/a: 9.45/3.4 G1 A/a: 5/1 f1 C-G1-G3, 9.45 0 f 0 2.05 1 0 2 A B 0->1 0 Sink 4 G3 A/a: 11.5/4.05 Gd1 A/a: 7.4/2 A/a: 4/2
Example (cont.) G1 9.1 7.4 9.45 1/5 0/4 4 G2 G2 3 1 1 4/5 0/1 1/2 3/4 G2 G1 G3 G3 3/3 4/4 Sensitization candidates [101], [100] 1 0
Example (cont.) 1.7 Sensitization candidates [1101], [1100] [0011], [0010] -> A = 0 or 1 -> [101], [100] C-G1-G3-G4-Sink, 11.5 C-G1-G2-G4-Sink, 11.15 C-G1-G2, 9.1 2 A 1 1 2 2 0 0 0 1 1 1 1 f2 G2 1 4 4 3 1 1 1 1 3 2 1 1 A/a: 7.4/2 2.05 1 1 1 1 E D B C 1 1 0 1 2.4 3 4 C-G1, 7.4 G4 5 A/a: 9.45/3.4 G1 A/a: 5/1 f1 C-G1-G3, 9.45 0 f 0 2.05 1 0 2 A B 1 0 Sink 4 G3 A/a: 11.5/4.05 Gd1 A/a: 7.4/2 A/a: 4/2
Example (cont.) 1.7 Sensitization candidates [1101], [1100] [0011], [0010] C-G1-G3-G4-Sink, 11.5 C-G1-G2-G4-Sink, 11.15 C-G1-G2, 9.1 2 A X 0 2 2 0 0 0 1 1 1 1 f2 G2 1 4 4 3 1 1 1 1 3 2 1 1 A/a: 7.4/2 2.05 0 0 0 1 E D B C 1 1 0 0 2.4 3 4 C-G1, 7.4 G4 5 A/a: 9.45/3.4 G1 A/a: 5/1 f1 C-G1-G3, 9.45 0 f 0 2.05 0 0 2 A B X 0 Sink 4 G3 A/a: 11.5/4.05 Gd1 A/a: 7.4/2 A/a: 4/2
Example (cont.) 1.7 Sensitization candidates [1101], [1100] [0011], [0010] -> A = 0 or 1 C-G1-G3-G4-Sink, 11.5 C-G1-G2-G4-Sink, 11.15 C-G1-G2, 9.1 2 A X->0 0 2 2 0 0 0 1 1 1 1 f2 G2 1 4 4 3 1 1 1 1 3 2 1 1 A/a: 7.4/2 2.05 0 0 0 1 E D B C 1 1 0 0 2.4 3 4 C-G1, 7.4 G4 5 A/a: 9.45/3.4 G1 A/a: 5/1 f1 C-G1-G3, 9.45 0 f 0 2.05 0 0 2 A B X->0 0 Sink 4 G3 A/a: 11.5/4.05 Gd1 A/a: 7.4/2 A/a: 4/2
Example (cont.) 1.7 Sensitization candidates [1101], [1100] [0011], [0010] -> A = 0 or 1 C-G1-G3-G4-Sink, 11.5 C-G1-G2-G4-Sink, 11.15 C-G1-G2, 9.1 2 A 0 0 2 2 0 0 0 1 1 1 1 f2 G2 1 4 4 3 1 1 1 1 3 2 1 1 A/a: 7.4/2 2.05 0 0 0 1 E D B C 1 1 0 0 2.4 3 4 C-G1, 7.4 G4 5 A/a: 9.45/3.4 G1 A/a: 5/1 f1 C-G1-G3, 9.45 0 f 0 2.05 0 0 2 A B 0 0 Sink 4 G3 A/a: 11.5/4.05 Gd1 A/a: 7.4/2 A/a: 4/2
Example (cont.) G2 3.7 7.4 9.45 0/2 3/5 4 G1 3 1 1 4/5 3/4 G2 G1 G3 G3 4/4 3/3 Sensitization candidates [101], [100] 1 0
Example (cont.) 1.7 Sensitization candidates [1101], [1100] [0011], [0010] -> A = 0 or 1 -> [101], [100] C-G1-G3-G4-Sink, 11.5 C-G1-G2-G4-Sink, 11.15 C-G1-G2, 9.1 2 A 0 0 2 2 0 0 0 1 1 1 1 f2 G2 1 4 4 3 1 1 1 1 3 2 1 1 A/a: 7.4/2 2.05 0 0 0 1 E D B C 1 1 0 0 2.4 3 4 C-G1, 7.4 G4 5 A/a: 9.45/3.4 G1 A/a: 5/1 f1 C-G1-G3, 9.45 0 f 0 2.05 0 0 2 A B 0 0 Sink 4 G3 A/a: 11.5/4.05 Gd1 A/a: 7.4/2 A/a: 4/2