1 / 53

COE 405 Sequential Circuit Design

COE 405 Sequential Circuit Design. Dr. Aiman H. El-Maleh Computer Engineering Department King Fahd University of Petroleum & Minerals. Outline. Sequential Circuit Model Timing of Sequential Circuits Latches and Flip flops Sequential Circuit Design Procedure

carolyoung
Télécharger la présentation

COE 405 Sequential Circuit Design

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. COE 405Sequential Circuit Design Dr. Aiman H. El-Maleh Computer Engineering Department King Fahd University of Petroleum & Minerals

  2. Outline • Sequential Circuit Model • Timing of Sequential Circuits • Latches and Flip flops • Sequential Circuit Design Procedure • Sequential Circuit Design Examples • State Minimization • State Encoding • Sequential Circuit Timing

  3. Sequential Circuit Model • A Sequential circuit consists of: • Data Storage elements: (Latches / Flip-Flops) • Combinatorial Logic: • Implements a multiple-output function • Inputs are signals from the outside • Outputs are signals to the outside • State inputs (Internal): Present State from storage elements • State outputs, Next State are inputs to storage elements

  4. Sequential Circuit Model • Combinatorial Logic • Next state function: Next State = f(Inputs, State) • 2 output function types : Mealy & Moore • Output function: Mealy Circuits Outputs = g(Inputs, State) • Output function: Moore Circuits Outputs = h(State) • Output function type depends on specification and affects the design significantly

  5. Sequential Circuit Model Mealy Circuit Moore Circuit

  6. Timing of Sequential CircuitsTwo Approaches • Behavior depends on the times at which storage elements ‘see’ their inputs and change their outputs (next state  present state) • Asynchronous • Behavior defined from knowledge of inputs at any instant of time and the order in continuous time in which inputs change • Synchronous • Behavior defined from knowledge of signals at discrete instances of time • Storage elements see their inputs and change state only in relation to a timing signal (clock pulses from a clock) • The synchronous abstraction allows handling complex designs!

  7. Set-Reset Latch & Flip Flop Nor-Nor SR Latch Nand-Nand SR Latch Master-Slave SR Flip-Flop Clocked SR Latch

  8. D Latch & D Flip Flop D Latch Rising-Edge Triggered D Flip Flop

  9. Sequential Circuit Design Procedure • 1. Specification – e.g. Verbal description • 2. Formulation – Interpret the specification to obtain a state diagram and a state table • 3. State Assignment - Assign binary codes to symbolic states • 4. Flip-Flop Input Equation Determination - Select flip-flop types and derive flip-flop input equations from next state entries in the state table • 5. Output Equation Determination - Derive output equations from output entries in the state table • 6. Verification - Verify correctness of final design

  10. State Initialization • When a sequential circuit is turned on, the state of the flip flops is unknown (Q could be 1 or 0) • Before meaningful operation, we usually bring the circuit to an initial known state, e.g. by resetting all flip flops to 0’s • This is often done asynchronously through dedicated direct S/R inputs to the FFs • It can also be done synchronously by going through the clocked FF inputs

  11. Example: Bit Sequence Recognizer 1101 • 1. Specifications: Detect the occurrence of bit sequence 1101 whenever it occurs on input X and indicate this detection by raising an output Z high • 2. Formulation: State Diagram

  12. Example: Bit Sequence Recognizer 1101 • From the State Diagram, we can fill in the 2-D State Table • There are 4 states, one input, and one output. • Two dimensional table with four rows, one for each current state. State Table State Diagram

  13. Example: Bit Sequence Recognizer 1101 • 3. State Assignment: From abstract symbols to binary bit representation of states • Each of the m symbolic states must be assigned a unique binary code • Minimum number of state bits (state variables) (FFs) required is nb, such that 2nb ≥ ns • If 2nb > ns, this leaves (2nb – ns) unused states • Utilize them as don’t care conditions to simplify CL design • But may need caution: e.g. what if the circuit enters an unused state by mistake nb= log2 ns.

  14. Example: Bit Sequence Recognizer 1101 • Also which code is given to which state?  different CL implementations  may influence optimization, e.g. (with 2 FFs) State A is assigned 00 or 01 or 10 or 11? • There are possible encodings = 16 • Let A = 00 (to suit being a Reset state), B = 01, C = 11, D = 10

  15. Example: Bit Sequence Recognizer 1101 • For optimization of FF input equations we express A(t+1), B(t+1), Z(t) in terms of A(t), B(t) and X(t) (using one dimensional state table)

  16. Example: Bit Sequence Recognizer 1101

  17. BCD to Excess-3 Serial Code Converter • Assume that once the machine is reset, a continues stream of BCD digits will be transmitted serially and converted to Excess-3 digits.

  18. BCD to Excess-3 Serial Code Converter State Diagram State Table

  19. BCD to Excess-3 Serial Code Converter

  20. BCD to Excess-3 Serial Code Converter Karnaugh maps for the encoded state bits and output bit (Bout)

  21. BCD to Excess-3 Serial Code Converter

  22. BCD to Excess-3 Serial Code Converter

  23. Serial-Line Code Converter for Data Transmission • Line codes are used in data transmission or storage systems to reduce effects of noise in serial communication channels. • Receiver of data must be able to operate synchronosly with sending unit. • Code converters transform data stream into a format encoded to enable receiver to recover data. • A phase lock loop (PLL) can recover clock from line data • If no long series of 1’s or 0’s in data encoded in non-return-to-zero (NRZ) format • If no long series of 0’s in data encoded in non-return-to-zero invert-on-ones (NRZI) format or return-to-zero (RZ) format • Always for Manchester format.

  24. Serial-Line Code Converter for Data Transmission • NRZ Code: duplicates the bit pattern of the input signal • NRZI Code: the output remains constant as long as the input is 0 and toggles if the input is 1. • RZ Code: a 0 is transmitted as a 0, while a 1 is transmitted as a 1 for the first half of the bit time and a 0 for the remaining bit time. • Manchester Code: a 0 is transmitted as a 0 for the first half of the bit time and a 1 for the remaining bit time, while a 1 is transmitted as a 1 for the first half of the bit time and a 0 for the remaining bit time.

  25. Serial-Line Code Converter for Data Transmission

  26. NRZ to Manchester Code Converter Note that clock_2 has twice the clock frequency of clock_1

  27. Mealy Type NRZ Manchester Code Converter

  28. Mealy-Type NRZ Manchester Code Converter

  29. Mealy-Type NRZ Manchester Code Converter

  30. Moore-Type NRZ Manchester Code Converter

  31. Moore-Type NRZ Manchester Code Converter

  32. Moore-Type NRZ Manchester Code Converter

  33. State Minimization • Aims at reducing the number of machine states • reduces the size of transition table. • State reduction may reduce • the number of storage elements. • the combinational logic due to reduction in transitions. • Completely specified finite-state machines • No don't care conditions. • Easy to solve. • Incompletely specified finite-state machines • Unspecified transitions and/or outputs. • Intractable problem.

  34. State Minimization for Completely-Specified FSMs • Equivalent states • Given any input sequence the corresponding output sequences match. • Theorem: Two states are equivalent iff • they lead to identical outputs and • their next-states are equivalent. • Equivalence is transitive • Partition states into equivalence classes. • Minimum finite-state machine is unique.

  35. State Minimization Algorithm • Stepwise partition refinement. • Initially • 1 = States belong to the same block when outputs are the same for any input. • Refine partition blocks: While further splitting is possible • k+1 = States belong to the same block if they were previously in the same block and their next-states are in the same block of k for any input. • At convergence • Blocks identify equivalent states.

  36. State Minimization Example • 1 = {(s1, s2), (s3, s4), (s5)}. • 2 = {(s1, s2), (s3), (s4), (s5)}. • 2 = is a partition into equivalence classes • States (s1, s2) are equivalent.

  37. State Minimization Example Original FSM Minimal FSM

  38. State Minimization Example Original FSM {OUT_0} = IN_0 LatchOut_v1' + IN_0 LatchOut_v3' + IN_0' LatchOut_v2' v4.0 = IN_0 LatchOut_v1' + LatchOut_v1' LatchOut_v2' v4.1 = IN_0' LatchOut_v2 LatchOut_v3 + IN_0' LatchOut_v2' v4.2 = IN_0 LatchOut_v1' + IN_0' LatchOut_v1 + IN_0' LatchOut_v2 LatchOut_v3 sis> print_stats pi= 1 po= 1 nodes= 4 latches= 3 lits(sop)= 22 #states(STG)= 5 Minimal FSM {OUT_0} = IN_0 LatchOut_v1' + IN_0 LatchOut_v2 + IN_0' LatchOut_v2' v3.0 = IN_0 LatchOut_v1' + LatchOut_v1' LatchOut_v2‘ v3.1 = IN_0' LatchOut_v1' + IN_0' LatchOut_v2' sis> print_stats pi= 1 po= 1 nodes= 3 latches= 2 lits(sop)= 14 #states(STG)= 4

  39. Input Next State Output Sequence Present State X=0 X=1 X=0 X=1 Reset S0 S1 S2 0 0 0 S1 S3 S4 0 0 1 S2 S5 S6 0 0 00 S3 S0 S0 0 0 01 S4 S0 S0 1 0 10 S5 S0 S0 0 0 11 S6 S0 S0 1 0 S0 0/0 1/0 S1 S2 0/0 1/0 0/0 1/0 S3 S4 S5 S6 1/0 1/0 1/0 1/0 0/0 0/1 0/0 0/1 Another State Minimization Example • Sequence Detector for codes of symbols 010 or 110 assuming that each symbol code is 3 bits in length

  40. Input Next State Output Sequence Present State X=0 X=1 X=0 X=1 Reset S0 S1 S2 0 0 0 S1 S3 S4 0 0 1 S2 S5 S6 0 0 00 S3 S0 S0 0 0 01 S4 S0 S0 1 0 10 S5 S0 S0 0 0 11 S6 S0 S0 1 0 Another State Minimization Example ( S0 S1 S2 S3 S4 S5 S6 ) ( S0 S1 S2 S3 S5 ) ( S4 S6 ) ( S0 S3 S5 ) ( S1 S2 ) ( S4 S6 ) ( S0 ) ( S3 S5 ) ( S1 S2 ) ( S4 S6 ) S1 is equivalent to S2 S3 is equivalent to S5 S4 is equivalent to S6

  41. Input Next State Output Sequence Present State X=0 X=1 X=0 X=1 Reset S0 S1' S1' 0 0 0 + 1 S1' S3' S4' 0 0 X0 S3' S0 S0 0 0 X1 S4' S0 S0 1 0 S0 X/0 S1’ 0/0 1/0 S4’ S3’ X/0 0/1 1/0 Another State Minimization Example • State minimized sequence detector for 010 or 110

  42. 00 10 S0[1] S1 [0] 00 01 10 11 11 01 00 01 00 S2[1] S3 [0] 01 10 10 11 11 01 10 10 S4[1] S5 [0] 11 00 00 01 11 Multiple Input Example present next state output state 00 01 10 11 S0 S0 S1 S2 S3 1 S1 S0 S3 S1 S4 0 S2 S1 S3 S2 S4 1 S3 S1 S0 S4 S5 0 S4 S0 S1 S2 S5 1 S5 S1 S4 S0 S5 0

  43. present next state output state 00 01 10 11 S0' S0' S1 S2 S3' 1 S1 S0' S3' S1 S0’ 0 S2 S1 S3' S2 S0' 1 S3' S1 S0' S0' S3' 0 S1 S0-S1 S1-S3 S2 S3-S4 S0-S1 S3-S0 S3 S1-S4 minimized state table (S0==S4) (S3==S5) S4-S5 S1-S0 S3-S1 S4 S4-S5 S0-S1 S3-S4 S5 S4-S5 S0 S1 S2 S3 S4 Implication Chart Method • Cross out incompatible states based on outputs • Then cross out more cells if indexed chart entries are already crossed out present next state output state 00 01 10 11 S0 S0 S1 S2 S3 1 S1 S0 S3 S1 S4 0 S2 S1 S3 S2 S4 1 S3 S1 S0 S4 S5 0 S4 S0 S1 S2 S5 1 S5 S1 S4 S0 S5 0 S3-S5 S0-S4

  44. State Minimization Computational Complexity • Polynomially-bound algorithm. • There can be at most |S| partition refinements. • Each refinement requires considering each state • Complexity O(|S|2). • Actual time may depend upon • Data-structures. • Implementation details.

  45. State Encoding • Determine a binary encoding of the states (|S|=ns) that optimize machine implementation • Area • Cycle-time • Power dissipation • Testability • Assume D-type registers. • Circuit complexity is related to • Number of storage bits nb used for state representation • Size of combinational component • There are possible encodings • Implementation Modeling • Two-level circuits. • Multiple-level circuits.

  46. State Encoding Example

  47. State Encoding Example

  48. Sequential Circuit Timing

  49. Timing Constraints • TD= worst case delay through combinational logic • TSU = FF set up time – Minimum time before the clock edge where the input data must be ready and stable • TclkQ = Clock to Q delay – Time between clock edge and data appearing at the output of the FF • THold= FF hold time – Minimum time after the clock edge where data has to remain stable (held stable) • Based on the FF & combinational logic timing parameters, the following timing constraints are obtained for correct operation of the circuit: Tclk ≥ Tclkq1 + TD + Tsu

  50. Timing Constraints • The previous equation assumes that the clock arrives at all FFs, at exactly the same time! • Clock Skew (Tskew) is the delay between clocks at different chip locations. • To take Clock Skew into account: Tclk≥ Tclkq1+ TD+ Tsu+ Tskew • Clock Signals will have random variations in their Periods and Frequencies, called Jitter. • The latest arrival time minus the earliest arrival time during an observed period of time is called the "peak to peak jitter amplitude". • We have to take the Peak to Peak Jitter (TP-P Jitter) into account Tclk≥ T clkq1+ TD+ Tsu+ Tskew+ TP-P Jitter

More Related