1 / 45

M-Theory & Matrix Models

M-Theory & Matrix Models. Sanefumi Moriyama ( NagoyaU -KMI) [ Fuji+Hirano+M 1106] [ Hatsuda+M+Okuyama 1207, 1211, 1301] [ HMO+Marino 1306] [ HMO+Honda 1306] [ Matsumoto+M 1310]. M is NOT for Messier Catalogue. M-Theory with Sym Enhancement. M2. M5. We Are Here!. Moduli Space

erling
Télécharger la présentation

M-Theory & Matrix Models

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. M-Theory & Matrix Models Sanefumi Moriyama (NagoyaU-KMI) [Fuji+Hirano+M 1106] [Hatsuda+M+Okuyama 1207, 1211, 1301] [HMO+Marino 1306] [HMO+Honda 1306] [Matsumoto+M 1310]

  2. M is NOT for Messier Catalogue M-Theorywith Sym Enhancement M2 M5 We Are Here! Moduli Space of String Theory

  3. What is M-Theory?

  4. M is for Mother 5 Consistent String Theories in 10D Het-E8xE8 IIA Het-SO(32) IIB I

  5. M is for Mother 5 Consistent String Theories in 10D 5 Vacua of A Unique String Theory Het-E8xE8 IIA String Duality D-brane Het-SO(32) IIB I

  6. M is for Mother M (11D) Strong Coupling Limit Het-E8xE8 IIA 10D Het-SO(32) IIB I

  7. M is for Membrane Fundamental M2-brane Solitonic M5-brane Lessons String Theory NOT Just "a theory of strings" Only Safe and Sound with D-branes D2-brane String (F1)

  8. M is for Mystery DOF N2 for N D-branes Described by Matrix

  9. M is for Mystery M2-brane M2-brane DOFN3/2/N3for NM2-/M5-branes

  10. To Summarize, we only know little on "What M-Theory Is" so far! Next, Recent Developments

  11. ABJM Theory [Aharony, Bergman, Jefferis, Maldacena] N=6Chern-Simons-matter Theory U(N)k U(N)-k Gauge Field Gauge Field Bifundamental Matter Fields N x M2 on R8 / Zk

  12. Recent Developments • Partition Function Z(N) on S3⇒ Matrix Model [Jafferis, Hama-Hosomichi-Lee] • Free Energy F(N)= Log Z(N)in large N Limit F(N)≈N3/2 [Drukker-Marino-Putrov] • Perturbative Sum Z(N) = Ai[N] (≈exp N3/2) [Fuji-Hirano-M]

  13. Recent Developments (Cont'd) • Worldsheet Instanton (F1 wrapping CP1⊂CP3) [Drukker-Marino-Putrov, Hatsuda-M-Okuyama] • Membrane Instanton (D2 wrapping RP3⊂CP3) [Drukker-Marino-Putrov, Hatsuda-M-Okuyama] • Bound State [Hatsuda-M-Okuyama] (Basically From Numerical Studies)

  14. Results Def [Grand Potential] J(μ)= log ∑N=0∞Z(N)eμN Regarding Partition Function with U(N) x U(N) as PF of N-Particle Fermi Gas System [Marino-Putrov]

  15. All Explicitly In Topological Strings[Fuji-Hirano-M, (Hatsuda-M-Okuyama)3, Hatsuda-M-Marino-Okuyama] • J(μ)=Jpert(μeff)+JWS(μeff)+JMB(μeff) • Jpert(μ)=Cμ3/3+Bμ+A • JWS(μeff)=Ftop(T1eff,T2eff,λ) • JMB(μeff)=(2πi)-1∂λ[λFNS(T1eff/λ,T2eff/λ,1/λ)] • T1eff=4μeff/k-iπ • T2eff=4μeff/k+iπ • λ=2/k • Ftop(T1,T2,τ)= ... • FNS(T1,T2,τ)= ... C=2/π2k, B=..., A=... μ-(-1)k/22e-2μ4F3(1,1,3/2,3/2;2,2,2;(-1)k/216e-2μ) k=even μeff = μ+e-4μ4F3(1,1,3/2,3/2;2,2,2;-16e-4μ) k=odd

  16. All Explicitly In Topological Strings[Fuji-Hirano-M, (Hatsuda-M-Okuyama)3, Hatsuda-M-Marino-Okuyama] • J(μ)=Jpert(μeff)+JWS(μeff)+JMB(μeff) • Jpert(μ)=Cμ3/3+Bμ+A • JWS(μeff)=Ftop(T1eff,T2eff,λ) • JMB(μeff)=(2πi)-1∂λ[λFNS(T1eff/λ,T2eff/λ,1/λ)] • F(T1,T2,τ1,τ2): Free Energy • of Refined Top Strings • T1,T2: KahlerModuli • τ1,τ2: Coupling Constants • Topological Limit Ftop(T1,T2,τ) = limτ1→τ,τ2→-τ F(T1,T2,τ1,τ2) • NS Limit FNS(T1,T2,τ) = limτ1→τ,τ2→0 2πiτ2F(T1,T2,τ1,τ2)

  17. All Explicitly In Topological Strings[Fuji-Hirano-M, (Hatsuda-M-Okuyama)3, Hatsuda-M-Marino-Okuyama] • J(μ)=Jpert(μeff)+JWS(μeff)+JMB(μeff) • Jpert(μ)=Cμ3/3+Bμ+A • JWS(μeff)=Ftop(T1eff,T2eff,λ) • JMB(μeff)=(2πi)-1∂λ[λFNS(T1eff/λ,T2eff/λ,1/λ)] F(T1,T2,τ1,τ2) = ∑jL,jR∑n∑d1,d2NjL,jRd1,d2 χjL(qL) χjR(qR) e-n(d1T1+d2T2) /[n(q1n/2-q1-n/2)(q2n/2-q2-n/2)] • q1 =e2πiτ1q2 =e2πiτ2qL=eπi(τ1-τ2)qR=eπi(τ1+τ2) NjL,jRd1,d2:BPS Index on local P1 x P1 (Gopakumar-Vafa orGromov-Witten invariants)

  18. Why Interesting? Non-Perturbative Part of Grand Potential J(μ) Jk=1(μ) = [#μ2+#μ+#]e-4μ + [#μ2+#μ+#]e-8μ + [#μ2+#μ+#]e-12μ + ... Jk=2(μ) = [#μ2+#μ+#]e-2μ + [#μ2+#μ+#]e-4μ + [#μ2+#μ+#]e-6μ + ... Jk=3(μ) = [#]e-4μ/3 + [#]e-8μ/3 + [#μ2+#μ+#]e-4μ + ... Jk=4(μ) = [#]e-μ + [#μ2+#μ+#]e-2μ + [#]e-3μ+ ... ... Jk=6(μ) = [#]e-2μ/3 + [#]e-4μ/3 + [#μ2+#μ+#]e-2μ + ...

  19. Why Interesting? Non-Perturbative Part of Grand Potential J(μ) Jk=1(μ) = [#μ2+#μ+#]e-4μ + [#μ2+#μ+#]e-8μ + [#μ2+#μ+#]e-12μ + ... Jk=2(μ) = [#μ2+#μ+#]e-2μ + [#μ2+#μ+#]e-4μ + [#μ2+#μ+#]e-6μ + ... Jk=3(μ) = [#]e-4μ/3 + [#]e-8μ/3 + [#μ2+#μ+#]e-4μ + ... Jk=4(μ) = [#]e-μ + [#μ2+#μ+#]e-2μ + [#]e-3μ+ ... ... Jk=6(μ) = [#]e-2μ/3 + [#]e-4μ/3 + [#μ2+#μ+#]e-2μ + ... WS(1) WS(2) WS(3)

  20. Why Interesting? • Worldsheet Instanton Jk=1(μ) = [#μ2+#μ+#]e-4μ + [#μ2+#μ+#]e-8μ + [#μ2+#μ+#]e-12μ + ... Jk=2(μ) = [#μ2+#μ+#]e-2μ + [#μ2+#μ+#]e-4μ + [#μ2+#μ+#]e-6μ + ... Jk=3(μ) = [#]e-4μ/3 + [#]e-8μ/3 + [#μ2+#μ+#]e-4μ + ... Jk=4(μ) = [#]e-μ + [#μ2+#μ+#]e-2μ + [#]e-3μ + ... ... Jk=6(μ) = [#]e-2μ/3 + [#]e-4μ/3 + [#μ2+#μ+#]e-2μ + ... WS(1) WS(2) WS(3) Match well with Topological String Prediction of WS

  21. Why Interesting? • Worldsheet Instanton, Divergent at Certain k Jk=1(μ) = [#μ2+#μ+#]e-4μ + [#μ2+#μ+#]e-8μ + [#μ2+#μ+#]e-12μ + ... Jk=2(μ) = [#μ2+#μ+#]e-2μ + [#μ2+#μ+#]e-4μ + [#μ2+#μ+#]e-6μ + ... Jk=3(μ) = [#]e-4μ/3 + [#]e-8μ/3 + [#μ2+#μ+#]e-4μ + ... Jk=4(μ) = [#]e-μ + [#μ2+#μ+#]e-2μ + [#]e-3μ + ... ... Jk=6(μ) = [#]e-2μ/3 + [#]e-4μ/3 + [#μ2+#μ+#]e-2μ + ... WS(1) WS(2) WS(3) Match well with Topological String Prediction of WS

  22. Why Interesting? • Worldsheet Instanton, Divergent at Certain k • Divergence Cancelled by Membrane Instanton Jk=1(μ) = [#μ2+#μ+#]e-4μ + [#μ2+#μ+#]e-8μ + [#μ2+#μ+#]e-12μ + ... Jk=2(μ) = [#μ2+#μ+#]e-2μ + [#μ2+#μ+#]e-4μ + [#μ2+#μ+#]e-6μ + ... Jk=3(μ) = [#]e-4μ/3 + [#]e-8μ/3 + [#μ2+#μ+#]e-4μ + ... Jk=4(μ) = [#]e-μ + [#μ2+#μ+#]e-2μ + [#]e-3μ + ... ... Jk=6(μ) = [#]e-2μ/3 + [#]e-4μ/3 + [#μ2+#μ+#]e-2μ + ... WS(1) WS(2) WS(3) Match well with Topological String Prediction of WS MB(2) MB(1)

  23. Divergence Cancellation Mechanism • Aesthetically - Reproducing the Lessons String Theory, Not Just 'a theory of strings' • Practically - Helpful in Determining Membrane Instanton

  24. Compact ModuliSpace? Compactified by Membrane Instanton NonPerturbatively!? Perturbative WorldSheet Instanton Moduli

  25. Another Implication • J(μ)=Jpert(μeff)+JWS(μeff)+JMB(μeff) • Jpert(μ)=Cμ3/3+Bμ+A • JWS(μeff)=Ftop(T1eff,T2eff,λ) • JMB(μeff)=(2πi)-1∂λ[λFNS(T1eff/λ,T2eff/λ,1/λ)] F(T1,T2,τ1,τ2) = ∑jL,jR∑n∑d1,d2NjL,jRd1,d2 χjL(qL) χjR(qR) e-n(d1T1+d2T2) /[n(q1n/2-q1-n/2)(q2n/2-q2-n/2)] NonPerturbative Topological Strings on General Background by Requiring Divergence Cancellation [Hatsuda-Marino-M-Okuyama]

  26. Possible Because • Viva! Max SUSY! (≈ Uniqueness, Solvability, Integrability) • Assist from Numerical Studies Bound States, neither from 't Hooft genus-expansion nor from WKB ℏ-expansion

  27. Break • Summary So Far - Explicit Form of Membrane Instanton - Exact Large N Expansion of ABJM Partition Function - Divergence Cancellation - Moduli Space of Membrane? • Hereafter - Fractional Membrane from Wilson Loop

  28. ABJ Theory (N1≠N2) N=6Chern-Simons-matter Theory U(N1)k U(N2)-k Gauge Field Gauge Field Bifundamental Matter Fields Min(N1,N2)x M2 & |N2-N1| x fractional M2 on R8 / Zk

  29. Fractional brane & Wilson loop 〈WY〉k(N1,N2) One Point Function of Wilson Loop in Rep Y on Min(N1,N2) x M2 & |N2-N1| x fractional M2 • Without Loss of Generality, M=N2-N1≧0, k>0 • [WY]GCk,M(z) = ∑N=0∞〈WY〉k(N,N+M)zN 〈WY〉GCk,M(z) =[WY]GCk,M(z) / [1]GCk,0(z) • ( [1]GCk,0(z) = exp J(log z) )

  30. Theorem[Hatsuda-Honda-M-Okuyama, Matsumoto-M] • 〈WY〉GCk,M(z) = det(M+r)x(M+r)Hp,q where • (M = N2-N1) Elp(ν) (1 + z Q(ν,μ) P(μ,ν) )-1 E-M+q-1(ν) • (1≦q≦M) • Hp,q = z Elp(ν) (1 + z Q(ν,μ) P(μ,ν) )-1 Q(ν,μ)Eaq-M(μ) • (1≦q-M≦r) and Q(ν,μ) =[2cosh(ν-μ)/2]-1, P(μ,ν) = [2cosh(μ-ν)/2]-1, Ej(ν)= e(j+1/2)ν lp: p-th leg length aq: q-th arm length

  31. Theorem[Hatsuda-Honda-M-Okuyama, Matsumoto-M] • 〈WY〉GCk,M(z) = det(M+r)x(M+r)Hp,q where • (M = N2-N1) Elp(ν)(1 + z Q(ν,μ) P(μ,ν) )-1 E-M+q-1(ν) • (1≦q≦M) • Hp,q = z Elp(ν) (1 + z Q(ν,μ) P(μ,ν) )-1 Q(ν,μ)Eaq-M(μ) • (1≦q-M≦r) and Q(ν,μ) = ..., P(μ,ν) = ..., Ej(ν)= ... Q(ν,μ) , P(μ,ν)as Matrix, E(ν)as Vector, Multiplication by Integration over μ,ν r? lp? aq?

  32. Theorem[Hatsuda-Honda-M-Okuyama, Matsumoto-M] • 〈WY〉GCk,M(z) = det(M+r)x(M+r)Hp,q where • (M = N2-N1) Elp(ν)(1 + z Q(ν,μ) P(μ,ν) )-1 E-M+q-1(ν) • (1≦q≦M) • Hp,q = z Elp(ν)(1 + z Q(ν,μ) P(μ,ν) )-1 Q(ν,μ)Eaq-M(μ) • (1≦q-M≦r) and Q(ν,μ) =..., P(μ,ν) = ..., Ej(ν)= e(j+1/2)ν lp: p-th leg length aq: q-th arm length

  33. FrobeniusSymbol (a1a2…ar|l1l2…lr+M) [7,7,6,6,4,2,1] = [7,6,5,5,4,4,2]T U(N) x U(N) U(N) x U(N+3) (3,2,0|9,7,5,4,2,1) or (-1,-2,-3,3,2,0|9,7,5,4,2,1) (6,5,3,2|6,4,2,1)

  34. Example GC k,M=3 〈-1|#|9〉〈-1|#|7〉〈-1|#|5〉〈-1|#|4〉〈-1|#|2〉〈-1|#|1〉 〈-2|#|9〉〈-2|#|7〉〈-2|#|5〉〈-2|#|4〉〈-2|#|2〉〈-2|#|1〉 〈-3|#|9〉〈-3|#|7〉〈-3|#|5〉〈-3|#|4〉〈-3|#|2〉〈-3|#|1〉 〈3|#|9〉 〈3|#|7〉 〈3|#|5〉 〈3|#|4〉 〈3|#|2〉 〈3|#|1〉 〈2|#|9〉 〈2|#|7〉 〈2|#|5〉 〈2|#|4〉 〈2|#|2〉 〈2|#|1〉 〈0|#|9〉 〈0|#|7〉 〈0|#|5〉 〈0|#|4〉 〈0|#|2〉 〈0|#|1〉 det

  35. Especially, ABJM Wilson loop det "〈General Representation〉= det 〈Hook Representations〉"

  36. Especially, ABJM Wilson loop "〈General Representation〉= det 〈Hook Representations〉" Fundamental Excitation "〈Solitonic Excitation〉= det〈Fundamental Excitation〉" Hook Representation

  37. Especially, Fractional brane Fractional brane In terms of Wilson loop "SolitonicBranes from Fundamental Strings?" GC 〈-1|#|2〉〈-1|#|1〉〈-1|#|0〉 〈-2|#|2〉〈-2|#|1〉〈-2|#|0〉 〈-3|#|2〉〈-3|#|1〉〈-3|#|0〉 det k,M=3

  38. Summary & Further Directions • ABJM Partition Function - Exact Large N Expansion - Divergence Cancellation • Fractional Membrane from Wilson Loop • Generalization for M2 Orientifolds, Orbifolds, Ellipsoid/Squashed S3 • Implication of Cancellation for M5 • Exploring Moduli Space of M-theory

  39. Thank you for your attention!

  40. Pictorially S7 / Zk S7 / Zk k→∞ CP3 x S1

  41. An Incorrect but Suggestive Interpretation Worldsheet Inst S7 / Zk 1-Instanton k-Instanton Off Fixed Pt cf: Twisted Sectors in String Orbifold

  42. Cancellation New Branch in WS inst ≈ Divergence Cancelled by MB Inst

  43. Compact Moduli Space Compactified by Membrane Instanton NonPerturbatively!? Perturbative WorldSheet Instanton Moduli Again: String Theory, NOT JUST "a theory of strings" Only Safe and Sound after D-branes

  44. Theorem[Hatsuda-Honda-M-Okuyama, Matsumoto-M] • Ξk(z) = Det (1 + z Q(ν,μ) P(μ,ν) ) • 〈WY〉GCk,M(z) / Ξk(z) = det(M+r)x(M+r)Hp,q where Elp(ν) (1 + z Q(ν,μ) P(μ,ν) )-1 E-M+q-1(ν) • (1≦q≦M) • Hp,q = z Elp(ν) (1 + z Q(ν,μ) P(μ,ν) )-1 Q(ν,μ)Eaq-M(μ) • (1≦q-M≦r) Q(ν,μ) =[2cosh(ν-μ)/2]-1 P(μ,ν) = [2cosh(μ-ν)/2]-1 Ej(ν)= e(j+1/2)ν Q(ν,μ), P(μ,ν)as Matrix, E(ν)as Vector, Multiplication by Integration over μ,ν r? lp? aq? • (M = N2-N1)

  45. FrobeniusSymbol For Youngdiagram[λ1λ2…λlmax] = [λ'1λ'2…λ'amax]T r= max{s|λs-s-M≧0} = max{s|λ's-s+M≧0}-M lp= λ'p-p+M aq= λq-q-M Denote as(a1a2…ar|l1l2…lr+M)

More Related