1 / 33

Incoherent Scatter Radar Measurements of Ionospheric Modification by Chemical Releases

Incoherent Scatter Radar Measurements of Ionospheric Modification by Chemical Releases. Paul A. Bernhardt Plasma Physics Division, Naval Research Laboratory Phil J. Erickson, Frank D. Lind, John C. Foster Millstone Hill Observatory, MIT Haystack Observatory, MA Mike P. Sulzer

hang
Télécharger la présentation

Incoherent Scatter Radar Measurements of Ionospheric Modification by Chemical Releases

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Incoherent Scatter Radar Measurements of Ionospheric Modification by Chemical Releases Paul A. Bernhardt Plasma Physics Division, Naval Research Laboratory Phil J. Erickson, Frank D. Lind, John C. Foster Millstone Hill Observatory, MIT Haystack Observatory, MA Mike P. Sulzer Arecibo Observatory, Arecibo, Puerto Rico E Kudeki Dept. of Elec. and Comp. Eng., UIUC, Urbana IL 61801J. Chau, R. WoodmanJicamarca Radio Observatory, Jicamarca, Peru Craig Heinselman SRII, Menlo Park, CA AMISR Science Planning Meeting, Asilomar, CA 12 October 2006

  2. ISR Diagnostics of Chemical Release Experiments in the Ionosphere • Ionospheric Modification • High Power Radio Waves • ISR Detection of Density Cavities and Irregularities • Enhanced Ion-Lines and Plasma-Lines in ISR Spectra • Chemical Releases • Electron Attachment and O+ Charge Exchange • ISR Detection of Heavy Ions with Modified Ion-Line Spectra • Non-Thermal Velocity Distributions from Supersonic Chemical Injections (i.e., Space Shuttle Exhaust - SIMPLEX) • ISR Ion-Line Spectra • Scatter from Ion-Acoustic Turbulence • Nano-Particle Injections (Charged Aerosol Release CARE) • Artificial Dusty Plasmas in the Upper Atmosphere • Radar Scatter from Charged Dust Turbulence • Echoes from Artificial Mesospheric Cloud • Conclusions

  3. AMISR Support of Ionospheric Heating HIPAS POKER/AMISR MUIR/AMISR

  4. Radio/Radar Based Diagnostics Facilities for HF Ionospheric Modification HAARP HF Transmitter, AK SIERRA Spectrum Monitor AMISR UHF Radar (MUIR) Kodiak SuperDARN Radar

  5. HAARP Radar Backscatterand Enhanced Ion/Plasma Lines F-Region Ionosphere AMISR SuperDARN HAARP Transmitter

  6. wR+ w0 Backscatter Radar Spectra (wR,kR):Generation of HF (w0) Pumped Plasma-Lines and Ion-Lines in AMSIR Data Electrostatic Waves wR Pump Wave 0 Time (S) 1 Electrostatic Waves wR - w0

  7. Shuttle Ionospheric Modification withPulsed Localized Exhaust (SIMPLEX) • Objectives • Study Regions of Large Relative Neutral-Plasma Convection • Examine Hyper Sonic Ion-Beam Injections for Enhanced Plasma Turbulence • Method • Release Shuttle Exhaust in Orbit • Charge Exchange with Ambient O+ Ions • Detect Effects with Radar Scatter • Observations • Non-Thermal Ion Line Spectra • Effects of Ion Ring Velocity Distribution • Scatter of Electrostatic Waves Produced by Instabilities

  8. Incoherent Scatter Observations During SIMPLEX • SIMPLEX I • Jicamarca Observations, 4 October 1997 • Ionospheric Hole Formation and Re-Filling • Ambipolar Diffusion Theory Does NOT Match Observations • SIMPLEX II • Arecibo Observations, 27 July 1999 • Ion Beam Formation • Non-Thermal Ion-Line Spectra • Indirect Evidence of Low Hybrid Instabilities • SIMPLEX III and IV • Millstone Hill Observations • 16 December 1999 • 8 April 2002 • Ion Beam Formation • Strongly Non-Thermal Ion-Line Spectra • Evidence of Ion Acoustic Instability

  9. SHUTTLE IONOSPHERIC MODIFICATION WITH PULSED LOCALIZED EXHAUSTSIMPLEX 56° Inclination Limit to Space Shuttle Orbit

  10. Space Shuttle OMS Engine Exhaust Parameters Orbital Maneuvering System (OMS) Auroral Ionospheric Disturbances Flow Rate: 2.5 x 1026 Molecules per Second per Engine Nonuniform Dual OMS Burn Symmetrical Dual OMS Burn in Daylight Single OMS Burn at Night

  11. Technique: Radar Scatter from Plume Ion Beams in Rocket Exhausts EXPANSION-COOLING-CHARGE EXCHANGE MOLECULAR IONS, H2O+ WATER VAPOR, H2O 100 m 10 m 1000 m NOZZLE FIELD ALIGNED BEAMS AND GYRO ORBITS IONOSPHERE (O+, e-) ION ACOUSTIC AND LOWER HYBRID WAVES RADAR BEAM

  12. Ion Beam Formation Through Exhaust Molecule Reactions with O+

  13. SIMPLEX I 4 OCTOBER 1997 GMT OMS BURN 11 S 12 S 78 W 77 W 76 W

  14. SIMPLEX IJicamarca Radar During STS-86 SIMPLEX Burn MODIFIED FLUX TUBES B OMS BURN UNMODIFIED FLUX TUBES RADAR BEAMS North West East South

  15. Space Shuttle Density Depression JRO ISR, 4 October 1997, 20:32:15 GMT 900 800 700 600 500 400 300 200 100 1.5 1.0 0.5 0.0 West Radar Beam Normalized Electron Density Altitude (km) -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 900 800 700 600 500 400 300 200 100 East Radar Beam 10 m/s Vertical Drift -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 Time (minutes)

  16. 4 October 1997, 20:32:15 GMT, 350 km 1.3 1.2 1.1 1.0 0.9 0.8 0.7 Shuttle Echo (a) West Radar Beam Normalized Electron Density 0 5 10 15 20 25 30 1.3 1.2 1.1 1.0 0.9 0.8 0.7 (b) East Radar Beam Exponential Fit to Data Diffusion Theory 0 5 10 15 20 25 30 Time (minutes)

  17. SIMPLEX IISTS-93 Ion Beam Injection Experiment Arecibo Radar Observation Geometry Magnetic Field Line Dip Angle = 49o Burn Start Radar Beam 81.4o Elevation STS-93 Orbit 276 km Altitude 0.5 Relative Latitude Stop 280 km Altitude Arecibo Observatory Relative -0.5 0.0 0.5 Longitude

  18. 430 MHz Radar Spectra, 27 July 1999, 00 AST 320 300 280 260 240 4900 4905 4910 4855 Relative Backscatter 320 300 280 260 240 4915 4925 4920 4930 2.5 2.0 1.5 1.0 0.5 0.0 Altitude (km) 320 300 280 260 240 4935 4940 4945 4950 320 300 280 260 240 5000 5005 5010 4955 -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 Frequency Shift (kHz)

  19. 1216 1145 1074 1003 932 861 790 719 648 575 505 6.137 6.010 5.884 5.757 5.631 5.504 5.378 5.252 5.125 4.999 4.862 1742 1639 1535 1432 1329 1226 1123 1020 917 813 710 Fitted Ion Temperature Fitted Electron Temperature Fitted Electron Density (c) 310 300 290 280 270 (a) (b) Ti (K) Te (K) Log10(ne) Altitude (km) 49 50 51 52 53 49 50 51 52 53 49 50 51 52 53 Time (Minutes) After 0500 UT Modified Velocity Distribution Electron Density Reduction Ion Heating

  20. Arecibo SIMPLEX II Experiment27 July 1999, Altitude 287.3 kmOMS Burn Termination at T0 = 05:49:11 UT Recovered Ion Distribution Parameters vm = 0.68 km/s, vm = 0.93 km/s, vm|| = -0.31 km/s Ambient and Modified Ion Line Spectra Measured Spectra Computed Spectra

  21. SIMPLEX III: STS-108 Burn Location16 December 2001 GMTIgnition: 18:51:37, Termination: 18:51:47 Farmington Termination Latitude Millstone Hill Radar Beam85o Elevation Ignition STS-108 Orbit Block Island Longitude

  22. SIMPLEX III Radar BackscatterMillstone Hill ISR, 18 April 2002Burn Time 17:26:19 – 17:26:29 UT2 Second and 24 km Resolution (d) (c) (b) (a) Power 550 500 450 400 350 300 Range (km) Burn 47:00 48:00 49:00 50:00 51:00 52:00 53:00 54:00 55:00 56:00 Time (Minutes: Seconds) after 18:00:00 UT

  23. SIMPLEX IV: STS-110 Burn Location18 April 2002 GMTIgnition: 17:26:18.95, Termination: 17:26:28.95 Farmington STS-110 Orbit Radar Beam 74.6o Elevation Termination Millstone Hill Ignition Latitude Block Island ISS Orbit Longitude

  24. SIMPLEX IV Radar BackscatterMillstone Hill Radar, 18 April 2002Burn Time 17:26:19 – 17:26:29 UT2 Second and 24 km Resolution (d) (c) (a) (b) Power 600 500 400 300 Altitude (km) Burn 26:00 26:10 26:20 26:30 26:40 26:50 27:00 27:10 27:20 27:30 27:40 27:50 28:00 28:10 28:20 28:30 Time (Minutes: Seconds) after 17:00:00 UT Thermal Space International Enhanced Turbulence Ion Line Shuttle Space Station Caused by Exhaust Pickup Ions

  25. TIG - 117 s Thermal Ion-Line Te = 2690 K, Ti = 1480 K Modified Ion-Line Spectra Backscatter Power Ring Ion Distribution ES Waves Driven by Instabilities TIG + 63 s Frequency Shift (kHz) Radar Ion-Line Interpretation 436 km Range/420 km Altitude

  26. Ion Cyclotron Waves Electrostatic Waves Modes with Radar Scatter Wave Number k = 18.43 Radians/Second 30 20 10 0 f1 (Hz) Ion Acoustic Waves 3 2.5 2 1.5 1 0.5 0 Radar Observation Angle q = 23 Degrees f2 (kHz) 1.2 1.0 0.8 0.6 0.4 0.2 0 Electron Cyclotron Waves Lower Hybrid Waves f3 (MHz) 0 30 60 90 Angle Between k and B, q (Degrees)

  27. Comparisons of SIMPLEX II, III, IV and ?

  28. Radar and In Situ Measurements During the Charged Aerosol Release Experiment (CARE) Charged Dust t5 t4 300 km t3 t2 t1 t0 Instrumented Daughter Payload Radial Expansion Chemical Release Source Primary Release Trajectory 150 km Large Time Settling of Charged Particulates Auxiliary Diagnostic Launches Radar Beam

  29. Negatively Charged Dust Cloud from a Spherical Expansion in a Non-Uniform Atmosphere with Magnetic Field Background Atmosphere 120 km Altitude T = 323.3 K r0 = 2.34 10-8 kg/m3 H1 = 10.2 km Al2O3 Particles Mass 100 kg Density 3.97 g/cm3 Sizes: 10-9 to 10-6 m Release Parameters VS = 2 km/s vm = 0.1 km/s VX0 = 0.7 km/s VZ0 = 1.4 km/s Altitude = 250 km

  30. Two-Dimensional Evolution of Dust Acoustic Waves Excited by CARE CARE Should Stimulate Dust Streaming Instabilities • Dust Lowers the Critical Drift for the Farly-Buneman Instability [Rosenberg and Chow, 1998] • Electron Flow Excites Dust Acoustic Waves by the Low Frequency Hall Current Instability (LFHI) [Rosenberg and Shukla, 2000; 2001] • Primary dust acoustic waves propagate to the right (+x direction). • Secondary waves propagate in the y direction. Scales and Chae, 2003 Scales, 2004

  31. VHF/UHF Radar Scatter from Expanding Dust Cloud 300 250 200 150 100 50 0 300 250 200 150 100 50 0 Turbulent Underdense Shell Turbulent Underdense Shell Altitude (km) Altitude (km) Backscatter Oblique Scatter -100 -50 0 50 100 Horizontal Distance (km) -100 -50 0 50 100 Horizontal Distance (km)

  32. Summary of AMISR Support for Active Experiments • ISR is the Primary Diagnostic for Ionospheric Modification Experiments • High Power Radio Waves • HAARP with MUIR/AMISR • HIPAS with Power AMISR • Space Shuttle OMS Engine Burns for SIMPLEX • JRO Radar • AMISR 7-Panel Array • Nano-Particle Release of Dust in Upper Atmosphere for CARE • Poker Flat AMISR

More Related