1 / 15

I-SWEAT Micro-Satellite Mission: Ionospheric Space Weather Effects in Auroral Thermosphere

I-SWEAT Micro-Satellite Mission: Ionospheric Space Weather Effects in Auroral Thermosphere. 电离层及热层空间天气研究微小卫星: I-SWEAT. Andrew Yau 游荣森 , D.D. Wallis University of Calgary 加拿大卡尔加里大学 Yunlong Lin 林云龙 , J. McConnell, M. Shepherd, B. Solheim York University 加拿大约克大学

keelty
Télécharger la présentation

I-SWEAT Micro-Satellite Mission: Ionospheric Space Weather Effects in Auroral Thermosphere

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. I-SWEAT Micro-Satellite Mission: Ionospheric Space Weather Effects in Auroral Thermosphere 电离层及热层空间天气研究微小卫星:I-SWEAT Andrew Yau游荣森, D.D. Wallis University of Calgary加拿大卡尔加里大学 Yunlong Lin林云龙, J. McConnell, M. Shepherd, B. Solheim York University加拿大约克大学 P. Harrison1, R.B. Langley2,W. Lunscher3, J.M. Noel4 1Magellan Bristol2UNB3COM DEV4RMC Supported by Canadian Space Agency 加拿大宇航局

  2. Outline 报告内容 • Focus of talk: Science 报告焦点: 科学 • Scientific Motivation 科学动机 • Scientific Objective 科学目标 • Mission Concept 科学任务的概念研究 • Results from Mission Concept Study初步结果和结论 我的国语不太行, 用英语作这个报告, 希望各位多多原谅… …

  3. Scientific Motivation 科学动机 (1) ● Understand physics of ionosphere-thermosphere response to space weather: magnetic storms and substorms 研究空间天气(磁暴和亚暴)对电离层以及热层的影响 ● Advance prediction capability of space weather effects 改进有关空间天气影响电离层以及热层的预测,预报,监测和预警 • Ionosphere: Total Electron Content (TEC) increase at mid/high latitude 电离层:在中,高纬区域“电子浓度总含量”的增长 • Scintillation: disrupt radio communications and GPS navigation 对无线电信号闪烁的影响: 扰乱无线电通讯和GPS导航 • Thermosphere: Heating, density increase, expansion at high latitude 热层: 加热过程,密度增长,在高纬的扩张 • Anomalous orbit drag to low-Earth-orbit (LEO) satellites 对低地球轨道卫星轨道保持的影响:产生不规则轨道拖曳

  4. Space Weather Effects in Ionosphere磁暴期间电子浓度总含量(TEC) 增加及 GPS 信号闪烁 TEC increase and GPS signal scintillation in magnetic storm Storm electron density (SED) increase over North America in Oct. 2003 “super-storm” [Foster 2005] 2003年10月北美地区磁暴期间电子密度增长 GPS scintillation at Ithaca, NY, in minor magnetic storm [Kintner 2007] 2001年9月小磁暴期间同样也有GPS信号闪烁

  5. Scientific Motivation 科学动机 (2) ● Understand physics of ionosphere-thermosphere response to space weather: magnetic storms and substorms 研究空间天气(磁暴和亚暴)对电离层以及热层的影响 ● Advance prediction capability of space weather effects 改进有关空间天气影响电离层以及热层的预测,预报,监测和预警 • Ionosphere: Total Electron Content (TEC) increase at mid/high latitude 电离层:在中,高纬区域“电子浓度总含量”的增长 • Scintillation: disrupt radio communications and GPS navigation 对无线电信号闪烁的影响: 扰乱无线电通讯和GPS导航 • Thermosphere: Heating, density increase, expansion at high latitude 热层: 加热过程,密度增长,在高纬的扩张 • Anomalous orbit drag to low-Earth-orbit (LEO) satellites 对低地球轨道卫星轨道保持的影响:产生不正常轨道拖曳下降

  6. Space Weather Effects in Thermosphere磁暴期间高层大气扩张,导致低地球轨道卫星不正常轨道下降 Atmospheric expansion & anomalous orbit drag in magnetic storm Anomalous drag of CHAMP orbit by ~500 m(ΔSMA) in Oct. 2003 storm at 410 km altitude 2003年10月的磁暴对410公里高度的CHAMP卫星产生500米的轨道下降 >2 increase in atmospheric mass density at 410 km inferred on CHAMP [Sutton 2005] 2003年超过2倍的大气密度增长对410公里高度的CHAMP卫星的影响

  7. Space Weather & Anomalous Orbit Drag空间天气对人造卫星轨道的影响 • Spacecraft collision avoidance: • Effective avoidance strategy requires orbit prediction to within ~3-5 km • “State-of-the-art” orbit prediction: • Ap and F10.7 based (e.g. STK) • Has large uncertainty: up to ~20 km • Orbit Error Simulation/Analysis: • Storm/substorm related anomalous orbit drag contributes significantly to errors in orbit prediction. 避免卫星在轨碰撞; 提高轨道预报能力; 轨道预报偏差的模拟和分析; 磁暴和亚暴对低地球轨道卫星的轨道预报的正确性具有重要影响 February 11, 2009 U.S. And Russian Satellites Collide “Two communications satellites — one Russian, one American — cracked up in silent destruction… The American satellite was an Iridium, …” 纽约时报(2009年2月11日)对美苏卫星相撞的报道:美国卫星是提供卫星电话服务的铱星

  8. Scientific Objective 科学目标 Scientific Objective 科学目标 Investigation Objectives 研究目标 Measurements 探测需求 Instruments 测仪器

  9. Mission Concept卫星计划和概念 卫星: “快捷”微小卫星 仪器: 中性粒子质量及速度分析器, 双频GPS接收机, 磁强计 轨道: 高倾角轨道,或者极轨;高度: 300-700 公里 Micro-satellite: • 3 instruments on “QuickSat” Bus Orbit: • Polar LEO: 300-700 km • Sun- or non-Sun-sync Science operations: • Operation in selected orbits / orbit segments

  10. System Architecture 卫星系统和空间任构成 Instrument Payload: ANA: Atmospheric Neutral Analyzer DGR: Dual-frequency GPS Receiver FMG: Fluxgate Magnetometer 中性粒子质量及速度分析器 双频GPS接收机 磁强计 Uplink/downlink: VHF/UHF VHF/UHF通讯 Ground System: Amateur-radio type ground station Mission Operations Center Multi Science Operation Center (SOC) 多元化分布式地面站

  11. I-SWEAT QuickSat Spacecraft加拿大“快捷”微小卫星平台 Z (nadir) FMG deployed on boom 磁强计 X (ram) VHF Uplink Antenna DGR side-facing antenna 双频GPS接收机 ANA ram-facing entrance slit 中性粒分析仪 Solar panels deployment

  12. Atmospheric Neutral Analyzer (ANA)中性粒子质量及速度分析仪探测原理 1. Entrance aperture accepts neutrals; deflects ions 6. CCD images ion positions (hence neutral velocities) 2. Electron beam ionizes a fractionof neutral;retains incident velocity 4. RF Analyzer energizes ions of “resonant” velocity (M/q) 3. Accelerate ions to same perpendicular energy/charge 5. Accept only resonant ions

  13. Dual-Frequency GPS Receiver (DGR)双频GPS接收机设计 • Heritage • Simplified version of e-POP GAP • GAP co-developed by UNB and Magellan Bristol • GAP has array of 5 GPS receivers networked to 4 patch antennas and 1 occultation antenna • Design • 2 GPS receivers networked to 2 antennas • Re-use GAP interface, power, GPS cards • Modified GAP implementation CASSIOPE/e-POP GAP electronics CASSIOPE/e-POP GAP electronics

  14. Fluxgate Magnetometer (FMG)磁通门磁强计的设计 • Measurement Goal: field-aligned currents >1 A/m2 along >1 km path • Sampling: 32 samples/sec  ~500 m/sample; resolution: 1 nT • Fluxgate magnetometer: measures magnetic field vector components by modulating permeability of ferro-magnetic rings inside detection coils • Non-zero magnetic flux inside coils induces voltage at 2  modulation freq. • Low-freq. feedback current through coil  ambient magnetic flux component • Design: • Based on CASSIOPE/e-POP Magnetic Field Instrument (MGF) • Resolution: 1/16 nT; Range: 65,536 nT CASSIOPE/e-POP MGF sensor assembly

  15. I-SWEAT Summary初步研究结果和结论 经过二年的初步论证和概念设计,我们提出利用加拿大的“快捷”微小卫星平台在高倾角低地球轨道(轨道高度: 300-700 公里)上对电离层及热层的中性粒子,磁场和电子密度总含量进行探测,确切掌握空间天气在磁暴和亚暴期间的变化对电离层和热层的影响,进而深入了解其对卫星的影响。 这些影响至少包括:电子密度总含量增长,GPS信号闪烁,热层扩张和异常轨道下降。进一步改进空间天气影响电离层及热成层的预测和预报方法将直接有利于卫星轨道设计和轨道操作。 这颗电离层及热层空间天气研究微小卫星(I-SWEAT)将至少携带3种探测仪器(中性粒子质量速度分析仪, 双频GPS 接收机, 磁强计),利用多元化分布式地面站独立完成低成本、高效率的长期科学探测任务。与其他空间天气研究卫星同步进行集群式组网探测,将进一步深化我们对空间天气物理过程的理解,扩大I-SWEAT对空间天气研究的意义。 卡尔加里大学和约克大学将汇同其他加拿大大学和研究部门进行科学载荷和卫星平台的研制,我们欢迎各种形式的合作研究和联合探测。 • Mission Concept: QuickSat bus in low-Earth polar orbit Instruments: Atmospheric Neutral Analyzer, Dual-frequency GPS Receivers, Fluxgate Magnetometer Low-cost science operations; multiple ground stations • Scientific Objective: Study space weather effects in ionosphere-thermosphere TEC enhancement; Thermosphere expansion; anomalous orbit drag

More Related