1 / 32

Chapter Two

Chapter Two. Derivatives and Their Uses. Limit as x→3 Shown Graphically. Derivative : 導數. (1) x takes values closer and closer to 3 but never equaling 3 lim ( x →3) (2x+4)=10 lim ( x → c ) f(x) lim ( x → c - ) f(x) 左極限 lim ( x → c + ) f(x) 右極限.

lirit
Télécharger la présentation

Chapter Two

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter Two Derivatives and Their Uses

  2. Limit as x→3 Shown Graphically

  3. Derivative : 導數 (1) x takes values closer and closer to 3 but never equaling 3 lim(x→3) (2x+4)=10 lim(x→c) f(x) lim(x→c-) f(x) 左極限 lim(x→c+) f(x) 右極限

  4. (2) the limit of a function may not exist but if the limit does exist , it must be a single number. Define: lim(x→0) (1+x)1/x = L=2.718 lim(x→∞) (1+1/n)n ( lim(x→c) f(x)= L , if and only if ) ( lim(x→c-) f(x)=lim(x→c+) f(x) = L )

  5. 求分式極限先化簡(simplifying): • 表示x-value close to 1, not equal to 1 • Ex: =

  6. Rules of Limits

  7. Examples of Discontinuous Graphs

  8. Conditions of Continuity

  9. If f and g are Continuous, so are these functions:

  10. every polynomial function is continous every rational function is continous , except where the denominator(分母) is 0 Ex : f(x)= f(1)=1-1+1+2-1=2 lim(x→1-) f(x)= lim(x→1-) (x5 –x4 +x3 +2x –1)=2 lim(x→1+) f(x)= lim(x→1+)(x2+x+2 /x+1)=4/2=2 lim(x→1-) f(x)= lim(x→1+) f(x)= f(1) ⇒ f(x) is continous at x=1

  11. slope the average rate of change Instantaneous rate of change

  12. Graph Showing Slope of Secant Line

  13. Graphs showing that as Q approaches P, secant becomes the tangent:

  14. 1.the line through P and Q call secant line (割線) • 2.let Q 朝P滑動,in the limit as Q→P, The secant line→ the tangent line at P

  15. the average rate of change: Slop(P-Q secant line)= [f(x+h)–f(x)]/ h Instantaneous rate of change : Slop(P-tangent line)= lim(h→0) [f(x+h)–f(x)]/ h The Derivative : f’(x) : the slope of f at x;measure how steeply the curve rises at x ;the Instantaneous(瞬間的) rate of change of f at x f’(x) =lim(h→0) [f(x+h)–f(x)]/ h

  16. tangent line(切線) to the curve at P(1,1) the tangent line fits the curve so closely , it called the best liner approximation to the curve

  17. A. c is constant d/dx c =0 f’(x)=lim(h→0)h(x+h)-f(x)/h =lim(h→0) c-c/0=0 B. d/dx c‧f(x)=c‧f ’(x) 令g(x)= c‧f(x) g’(x)= lim(h→0)[g(x+h)-g(x)] /h = lim(h→0)[c‧f(x+h)- c‧f(x)] /h = lim(h→0)c‧[f(x+h)- f(x)] /h = c‧lim(h→0)[f(x+h)- f(x)] /h = c‧f(x)

  18. C. d/dx [f(x)±g(x)]=f’(x) ± g’(x) 令p(x)=f(x)±g(x) p’(x)= lim(h→0) p(x+h)-p(x)/h =lim(h→0) [f(x+h)±g(x+h)] - [f(x)±g(x)] /h = lim(h→0) [f(x+h)-f(x)] ± [g(x+h)-g(x)] /h = lim(h→0) f(x+h)-f(x)/h ±lim(h→0) g(x+h)-g(x)/h = f’(x) ± g’(x)

  19. D. d/dx [f(x)g(x)]=f’(x)g(x)+f(x)g’(x) 令p(x)=f(x)g(x) p’(x)= lim(h→0) [p(x+h)-p(x)]/h = lim(h→0) [f(x+h)g(x+h)-f(x)g(x)+f(x)g(x+h)- f(x)g(x+h)] /h =lim(h→0) g(x+h)[f(x+h)-f(x)]+f(x)[g(x+h)-g(x)] /h =lim(h→0) f(x+h)-f(x)/h‧lim(h→0) g(x+h)+ lim(h→0) g(x+h)-g(x)/h‧f(x) =f’(x)g(x)+f(x)g’(x)

  20. E. If f’ g’ exist with g(x)≠0 , g(x)=f(x)/g(x) , then g’(x)=f’(x)g(x)-f(x)g’(x)/[g(x)]2 g’(x)= lim(h→0) g(x+h)-g(x)/h = lim(h→0) 1/h‧[f(x+h)/g(x+h)-f(x)/g(x)] = lim(h→0) 1/h‧[f(x+h)g(x)-f(x)/g(h+x)+f(x)g(x)-f(x)g(x)] /g(x+h)‧g(x) = lim(h→0) 1/g(x+h)g(x)‧[ g(x)[f(x+h)-f(x)] /h-f(x)[g(x+h)-g(x)] /h ] =1/[g(x)]2 [f’(x)g(x)-f(x)g’(x)] =f’(x)g(x)-f(x)g’(x)/[g(x)]2

  21. F. d/dx xn =n.xn-1 (1) n:正整數 (positive integer) (x+h)2 =x2 +2xh+h2 (x+h)3 =x3 +3x3h+3xh3+h3 (x+h)n =xn +nxn-1 h+h2 [1/2(n-1)h x2 +h2 ….] =xn +nxn-1 h+h2.p f’(x) = lim(h→0) (x+h)n – xn /h = lim(h→0) nxn-1 h+h2 p /h = lim(h→0) nxn-1 +h.p = nxn-1

  22. (2) n:負整數 (negative integer) let n=-p (positive integer) d/dx (xn)=d/dx (1/xp) =-p.xp-1.1 /x2p =-p. xp-1-2p =-p.x-p-1 = nxn-1

  23. The Chain Rule <合成函數微分> d/dx f(g(x))=f’(g(x)).g’(x) let y=f(u) , u=g(x) ⇒ y=f’(g(x)) dy/du =f ’(u) , du/dx =g’(x) dy/dx=d/dx f(g(x)) ∥ dy/du.du/dx =f’(x).g’(x) =f’(g(x)).g’(x)

  24. Ex: f(u)=u2 , u=g(x)=4-x f(g(x))=(4-x)2 =16+ x2 -8x d/dx f(g(x)) =2(4-x)(4-x)’ =(8-2x)(-1) = 2x-8

  25. Non differentiable Functions 不可微函數 function that can’t be differentiated at certain values Ex: f(x)=|x|, at x=0 lim(h→0) [f(0+h)-f(0)] /h = lim(h→0) [f(h)-0] /h= lim(h→0)|h|/ h ① lim(h→0+) |h|/ h = h/h=1 ② lim(h→0-) |h|/ h = -h/h=-1 lim(h→0+) = lim(h→0-) f(x) ∴ f’(0) doesn’t exist

  26. ※ f will not be differentiable at c f has a cornerpoint at x = c f has a vertical tangent at x = c f is discontinuous at x = c

  27. ※ 可微性與連續性 A ⇒ B ①f’(c)存在⇒ f 在 x=c 連續 lim(x→c) f(x)-f(c)/x-c存在 , f’(c) lim(h→0) f(c+h)-f(c)/n x-c=h→0 ⇒c+h=x x-c→0 x→c <證明> lim(x→c) f(x)=f(c) lim(x→c) f(x)- f(c)= lim(x→c) f(x)-f(c)/x-c.(x-c) =f’(c) lim(x→c) (x-c) =f’(c).0 =0 ⇒ lim(x→c) f(x)=f(c) , ∴ f在x=c 連續

  28. ② ⇐ x B ⇐ A (x) ex: f(x)=|x| at x=0 f is continous , at x=0 f’(0) doesn’t exist

  29. Geometric Relation Between Function and its Derivative

  30. Venn Diagram Showing Relation Between Continuous and Differentiable Functions

More Related