1 / 59

Plants

Plants. Definition of a Plant:.

maude
Télécharger la présentation

Plants

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Plants

  2. Definition of a Plant: • A multicellular, eukaryotic, photosynthetic autotroph. The cell walls contain cellulose and they store excess glucose as starch. They also exhibit alternation of generations – one will be dominant over the other. The sporophyte generation is 2n (diploid) and the gametophyte generation is n (haploid).

  3. Evolution of Plants • Plants evolved from aquatic green algae about 500 mya. • Paleozoic era • Adaptations to dry land • Most plants are land plants today

  4. Two Groups of Plants • Non-vascular – Bryophytes – no xylem or phloem • Vascular – Tracheophytes – contain xylem and phloem – conducting tissue • Xylem conducts – water • Phloem conducts – dissolved sugars

  5. Primary Functions of Plants • Absorb carbon dioxide • Release Oxygen • Hold soil in place • Provide for the transfer of energy from the sun to other organisms – AKA – Food • Provides habitats for animals

  6. Division - Bryophyta • Non-vascular • Mosses, horn-worts, liverworts • They lack any lignin-fortified tissue so they can’t grow very tall. • The gametophyte generation is dominant in bryophytes (it is the green part that you see and the sporophyte is the stalk coming out of the gametophyte.)

  7. Bryophyte continued • Female gametophyte has an Archegonium that produces the egg (n) • Male gametophyte has Antheridia that produces sperm (n)- These are motile sperm and must have water in order to fertilize the egg. • Fertilization occurs within the archegonium and produces the zygote. The Sporophyte then grows from the zygote out of the gametophyte and produces sporangia that produce spores.

  8. What do Bryophytes do? • Stabilize and form soil from rocks – are pioneers in primary succession and are necessary to form the soil. • Used as fuel (peat moss) • Retains moisture when mixed with soil

  9. Tracheophytes are: • Vascular plants • Xylem and Phloem used for transport of water and sugars • Xylem and Phloem contain lignin that gives the plant support so that it can stand up against gravity • Roots absorb water and prevent desiccation (drying out), and anchor in the soil giving extra support • Leaves increase the photosynthetic area • Sporophyte is the dominant generation

  10. Two Groups of Tracheophytes • Seedless Plants– Ferns – Pteridophytes • Homosporous– They produce only one type of spore • Stay fairly small because they must have water to reproduce due to the fact that sperm are flagellated and swim to get to the archegonium to fertilize the egg. • Ancient Ferns were tree size • They reabsorbed so much carbon dioxide during the Carboniferous period that the Earth experienced Global Cooling • Most turned into Coal that is now one of the causes of Global Warming

  11. Life Cycle of a Fern

  12. Seed Plants • Heterosporous – Produce megaspores – female gametophyte and microspores – male gametophyte • Male gametophyte does not have flagella so they don’t need water • Gymnosperms – Cone bearing – naked seed (conifers – pine, firs, redwoods, junipers, and sequoia) – long-lived organisms

  13. Gymnosperms • First seed plants to appear • Seeds are not enclosed in a fruit • Replaced the ferns because they were better adapted for land • Have needle shaped leaves with a waxy covering that helps to prevent drying • Use the wind for pollination

  14. Angiosperms • Flowering plants – seeds are enclosed in a fruit • Most diverse and abundant of all plant species • Color and scent of flowers attracts animals for pollination and dispersal of seeds • Ovary becomes the fruit (fruit is ripened ovary) • Ovule becomes the seed

  15. Seed/Fruit adaptations • Maples have wings so that the wind can carry them • Fruit has burrs that stick to animal fur • Brightly colored and sweet so that animals eat them and then poop the seeds with fertilizer so it grows rapidly • Some float on water (coconut) • Fruit prevents drying out of seeds and protects them until they are ready to be dispersed.

  16. Two types of Angiosperms • Monocots – have one cotyledon (seed leaf) • Scattered vascular bundles • Parallel veins in the leaves • Flower parts in 3s • Fibrous roots

  17. Dicots – have two cotyledons (seed leaves) • Vascular bundle is arranged in a ring • Veins are netlike or branched • Flower parts are in 4s or 5s • Have taproots

  18. Plants: Part II –How plants Grow • Plants can only grow from meristematic tissue (meristem) – it is embryonic tissue (stem cell) • Located at the tip of the roots and in the buds of shoots is apical meristem. • The plant’s roots grow down into the soil from this tissue and grow taller from the top of the plant.

  19. Primary Growth • Zone of cell division – apical meristem: actively dividing cells • Zone of elongation – Cells are not dividing but are getting longer and push the root cap down deeper into the soil • Zone of differentiation: Cells become specialized into three tissue systems • A. The protderm becomes the epidermis • B. The ground meristem becomes the cortex for storage • C. The procambium becomes the primary xylem and phloem.

  20. Vascular Cambium is what makes woody plants thicker. Responsible for secondary growth.

  21. Types of Plant Tissue: • 1. Dermal Tissue • 2. Vascular Tissue • 3. Ground Tissue

  22. Dermal Tissue • 1. Covers and protects the plant. • Endodermis • Epidermis • Modified cells like guard cells, root hairs, and cells that make waxy cuticle

  23. Vascular Tissue • Xylem – conducts water and dissolved minerals (cells are dead at maturity) • Consists of tracheids and vessel elements • Both types of cells are dead at maturity • Tracheids – long thin cells that overlap and are tapered at the ends. Water passes from one cell to another through pits. • Cells walls are hardened with lignin. • Xylem is what makes up wood.

  24. Tracheid

  25. Vessel Elements – wider than tracheids, but also shorter than tracheids. • Aligned end to end and the ends are perforated to allow free flow through the vessel tubes. • Seedless vascular plants and gymnosperms have only tracheids. • Seed plants have both tracheids and vessel elements.

  26. Comparison of Tracheid and Vessel Element

  27. Phloem • Carries sugars from the leaves to the rest of the plant by active transport. • Made of sieve tube members (elements) with sieve plates at the end to connect them. • These cells are alive at maturity but lack a nucleus, ribosomes and vacuoles. • Companion cells are connected to each sieve tube member and provides the sieve tube cells with what they need.

  28. Ground Tissue • Most common type of tissue in a plant • Functions in 1)support 2) storage 3) photosynthesis • Three types of ground tissue • Parenchyma • Sclerenchyma • Collenchyma

  29. Parenchymal Cells • They are like a regular plant cell but they lack secondary cell walls • Are totipotent • Many contain chloroplast and carry out photosynthesis – mesophyll cells in the leaf

  30. Collenchymal Cells • Unevenly thickened primary cell walls and lack secondary cell walls and lignin to harden them • They are alive at maturity and function in support of the growing stem. • They are the strings in celery

  31. Sclerenchymal Cells • Have thick primary and secondary cell walls • Function in support • Two types: 1) fibers 2) sclerids • Fibers – in bundles and are used in making rope • Sclerids – short and irregular and make up the rough seed coat and pits. They give fruit the gritty texture like in pears.

  32. Roots and their Function • 1) absorb water and nutrients • 2) anchor the plant in the soil • 3) store food

  33. Dicot Root

  34. Parts of the Root and their Fuctions • Epidermis- covers and protects, absorbs • Root hairs – increase surface area • Cortex – Storage of starch and sugar • Stele – consists of vascular tissue and is surrounded by the pericycle (contains meristematic tissue) • Lateral roots arise from the stele • Endoderm – Surrounds the vascular cylinder

  35. Casparian strip – a band of cell wall containing suberin and lignin, found in the endodermis. It restricts the movement of water across the endodermis. • Suberin – a waxy like substance that surrounds the casparian strip and acts as a barrier to water and solute movement across the casparian strip.

  36. Types of Roots • 1) Drop – Type of aerial • 2) taproot • 3) fibrous • 4) Adventitious roots • 5) Prop • 6) Aerial – pneumatophores - snorkel

  37. The Leaf

  38. Parts of the leaf • Cuticle – covered with cutin(a wax) to prevent water loss • Guard Cells – modified epidermal cells that surround the stomata and help to control the opening and closing of the stomates. They do contain chloroplast. • Stomata – Openings on the underside of the leaf where gases, CO2 is taken in, O2 is released and water vapor is lost by transpiration. 90% of water escapes through the stomates

  39. Pallisade and spongy mesophyll – pallisade is underneath the epidermis and the spongy is in the middle of the leaf. The primary function is photosynthesis. • Vascular bundles – veins – located in the mesophyll and carry water and nutrients from the soil to the leaves and carry sugars from the leaves to the rest of the plant.

  40. Control of Stomata by Guard Cells • In the light, guard cells actively pump protons out, and this increases the uptake of potassium and chloride ions. (No light, potassium and chloride diffuse out of guard cells) • Higher concentrations of potassium and chloride gives guard cells a negative water potential. • This causes water to flow into the cells and increases the turgor pressure. • Increased turgor pressure stretches the cells and opens the stoma. (Decreased turgor pressure (flacid), the stomata closes. • Basically, the cellulose fibers are arranged radially so that when the cells absorb water they curve outward and open the stomata. They curve inward when flacid and close the stomata.

  41. What will make the guard cells open? • Decreased carbon dioxide stimulates stomata to open. Happens when photosynthesis begins. • Increase in potassium ions in the guard cells which lowers the water potential • Stimulation of the blue light receptor • Active transport of H+ out of the guard cells

  42. What will make stomates close? • 1. Lack of water • 2. High temperatures – stimulates cellular respiration and increases carbon dioxide • 3. Abscisic acid – produced by mesophyll cells in response to dehydration and guard cells close the stomata

  43. Transport of Water in Plants through the Xylem • Water rises in the xylem against gravity. • 2 forces accomplish this: • 1) Root Pressure • 2) Transpirational Pull

More Related