1 / 50

Designing a Single Cycle Datapath & Datapath Control

Designing a Single Cycle Datapath & Datapath Control. CPI. Inst. Count. Cycle Time. The Performance Perspective. Performance of a machine is determined by: Instruction count Clock cycle time Clock cycles per instruction Processor design (datapath and control) will determine:

minda
Télécharger la présentation

Designing a Single Cycle Datapath & Datapath Control

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Designing a Single Cycle Datapath&Datapath Control

  2. CPI Inst. Count Cycle Time The Performance Perspective • Performance of a machine is determined by: • Instruction count • Clock cycle time • Clock cycles per instruction • Processor design (datapath and control) will determine: • Clock cycle time • Clock cycles per instruction • Single cycle processor: • Advantage: One clock cycle per instruction • Disadvantage: long cycle time

  3. How to Design a Processor: step-by-step • 1. Analyze instruction set => datapath requirements • the meaning of each instruction is given by the register transfers • datapath must include storage element for ISA registers • possibly more • datapath must support each register transfer • 2. Select set of datapath components and establish clocking methodology • 3. Assemble datapath meeting the requirements • 4. Analyze implementation of each instruction to determine setting of control points that effects the register transfer. • 5. Assemble the control logic

  4. 31 26 21 16 11 6 0 op rs rt rd shamt funct 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits 31 26 21 16 0 immediate op rs rt 6 bits 5 bits 5 bits 16 bits 31 26 0 op target address 6 bits 26 bits The MIPS Instruction Formats • All MIPS instructions are 32 bits long. The three instruction formats: • R-type • I-type • J-type • The different fields are: • op: operation of the instruction • rs, rt, rd: the source and destination register specifiers • shamt: shift amount • funct: selects the variant of the operation in the “op” field • address / immediate: address offset or immediate value • target address: target address of the jump instruction

  5. 31 26 21 16 11 6 0 op rs rt rd shamt funct 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits 31 26 21 16 0 op rs rt immediate 6 bits 5 bits 5 bits 16 bits 31 26 21 16 0 op rs rt immediate 6 bits 5 bits 5 bits 16 bits 31 26 21 16 0 op rs rt immediate 6 bits 5 bits 5 bits 16 bits The MIPS-lite Subset for today • ADD and SUB • addU rd, rs, rt • subU rd, rs, rt • OR Immediate: • ori rt, rs, imm16 • LOAD and STORE Word • lw rt, rs, imm16 • sw rt, rs, imm16 • BRANCH: • beq rs, rt, imm16

  6. Logical Register Transfers • RTL gives the meaning of the instructions • All start by fetching the instruction op | rs | rt | rd | shamt | funct = MEM[ PC ] op | rs | rt | Imm16 = MEM[ PC ] inst Register Transfers ADDU R[rd] <– R[rs] + R[rt]; PC <– PC + 4 SUBU R[rd] <– R[rs] – R[rt]; PC <– PC + 4 ORi R[rt] <– R[rs] + zero_ext(Imm16); PC <– PC + 4 LOAD R[rt] <– MEM[ R[rs] + sign_ext(Imm16)]; PC <– PC + 4 STORE MEM[ R[rs] + sign_ext(Imm16) ] <– R[rt]; PC <– PC + 4 BEQ if ( R[rs] == R[rt] ) then PC <– PC + sign_ext(Imm16)] || 00 else PC <– PC + 4

  7. Requirements of the Instruction Set • Memory • instruction & data • Registers (32 x 32) • read RS • read RT • Write RT or RD • PC • Extender • Add and Sub register or extended immediate • Add 4 or extended immediate to PC

  8. Components of the Datapath • Combinational Elements • Storage Elements • Clocking methodology

  9. CarryIn A 32 Sum Adder 32 B Carry 32 Select A 32 Y MUX 32 B 32 OP A 32 Result ALU 32 B 32 Combinational Building Blocks MUX Adder ALU

  10. Write Enable Data In Data Out N N Clk Storage Element (Register) • Register • Similar to the D Flip Flop except • N-bit input and output • Write Enable input • Write Enable: • negated (0): Data Out will not change • asserted (1): Data Out will become Data In

  11. RW RA RB Write Enable 5 5 5 busA busW 32 32 32-bit Registers 32 busB Clk 32 Storage Element: Register File • Register File consists of 32 registers: • Two 32-bit output busses: busA and busB • One 32-bit input bus: busW • Register is selected by: • RA (number) selects the register to put on busA (data) • RB (number) selects the register to put on busB (data) • RW (number) selects the register to be writtenvia busW (data) when Write Enable is 1 • Clock input (CLK) • The CLK input is a factor ONLY during write operation • During read operation, behaves as a combinational logic block: • RA or RB valid => busA or busB valid after “access time.”

  12. Write Enable Address Data In DataOut 32 32 Clk Storage Element: Idealized Memory • Memory (idealized) • One input bus: Data In • One output bus: Data Out • Memory word is selected by: • Address selects the word to put on Data Out • Write Enable = 1: address selects the memoryword to be written via the Data In bus • Clock input (CLK) • The CLK input is a factor ONLY during write operation • During read operation, behaves as a combinational logic block: • Address valid => Data Out valid after “access time.”

  13. Clk Setup Hold Setup Hold Don’t Care . . . . . . . . . . . . Clocking Methodology • All storage elements are clocked by the same clock edge • Cycle Time = CLK-to-Q + Longest Delay Path + Setup + Clock Skew • (CLK-to-Q + Shortest Delay Path - Clock Skew) > Hold Time

  14. Step 3 • Register Transfer Requirements –> Datapath Assembly • Instruction Fetch • Read Operands and Execute Operation

  15. PC Clk Next Address Logic Address Instruction Word Instruction Memory 32 Overview of the Instruction Fetch Unit • The common RTL operations • Fetch the Instruction: mem[PC] • Update the program counter: • Sequential Code: PC <- PC + 4 • Branch and Jump: PC <- “something else”

  16. 31 26 21 16 11 6 0 op rs rt rd shamt funct 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits Add & Subtract • R[rd] <- R[rs] op R[rt] Example: addU rd, rs, rt • Ra, Rb, and Rw come from instruction’s rs, rt, and rd fields • ALUctr and RegWr: control logic after decoding the instruction Rd Rs Rt ALUctr RegWr 5 5 5 busA Rw Ra Rb busW 32 32 32-bit Registers Result ALU 32 32 busB Clk 32

  17. Rd Rs Rt ALUctr RegWr 5 5 5 busA Rw Ra Rb busW 32 32 32-bit Registers Result ALU 32 32 busB Clk 32 Register-Register Timing Clk Clk-to-Q Old Value New Value PC Instruction Memory Access Time Rs, Rt, Rd, Op, Func Old Value New Value Delay through Control Logic ALUctr Old Value New Value RegWr Old Value New Value Register File Access Time busA, B Old Value New Value ALU Delay busW Old Value New Value Register Write Occurs Here

  18. 11 31 26 21 16 0 op rs rt immediate 6 bits 5 bits 5 bits 16 bits rd? 31 16 15 0 immediate 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 bits 16 bits Logical Operations with Immediate • R[rt] <- R[rs] op ZeroExt[imm16] ] Rd Rt RegDst Mux Rs ALUctr RegWr 5 5 5 busA Rw Ra Rb Result busW 32 32 32-bit Registers ALU 32 busB 32 Clk 32 Mux imm16 ZeroExt 32 16 ALUSrc

  19. 11 31 26 21 16 0 op rs rt immediate 6 bits 5 bits 5 bits 16 bits rd Load Operations • R[rt] <- Mem[R[rs] + SignExt[imm16 Example: lw rt, rs, imm16 Rd Rt RegDst Mux Rs ALUctr RegWr 5 5 5 busA W_Src Rw Ra Rb busW 32 32 32-bit Registers ALU 32 32 busB Clk MemWr Mux 32 Mux WrEn Adr Data In 32 Data Memory 32 imm16 Extender 32 16 Clk ALUSrc ExtOp

  20. 31 26 21 16 0 op rs rt immediate 6 bits 5 bits 5 bits 16 bits Store Operations • Mem[ R[rs] + SignExt[imm16] <- R[rt] ] • Example: sw rt, rs, imm16 Rd Rt ALUctr MemWr W_Src RegDst Mux Rs Rt RegWr 5 5 5 busA Rw Ra Rb busW 32 32 32-bit Registers ALU 32 32 busB Clk Mux 32 Mux WrEn Adr Data In 32 32 Data Memory imm16 32 Extender 16 Clk ALUSrc ExtOp

  21. 31 26 21 16 0 op rs rt immediate 6 bits 5 bits 5 bits 16 bits The Branch Instruction • beq rs, rt, imm16 • mem[PC] Fetch the instruction from memory • Equal <- R[rs] == R[rt] Calculate the branch condition • if (COND eq 0) Calculate the next instruction’s address PC <- PC + 4 + ( SignExt(imm16) x 4 ) else PC <- PC + 4

  22. 31 26 21 16 0 op rs rt immediate 6 bits 5 bits 5 bits 16 bits Cond Rs Rt 4 RegWr 5 5 5 busA Rw Ra Rb Adder busW 32 32 32-bit Registers Equal? Mux PC busB Clk 32 Adder Clk Datapath for Branch Operations beq rs, rt, imm16 Datapath generates condition (equal) Inst Address nPC_sel 32 00 imm16 PC Ext

  23. Instruction<31:0> Inst Memory <11:15> <21:25> <16:20> <0:15> Adr Rs Rt Rd Imm16 RegDst nPC_sel ALUctr MemWr MemtoReg Equal Rt Rd 0 1 Rs Rt 4 RegWr 5 5 5 busA Adder Rw Ra Rb = busW 00 32 32 32-bit Registers ALU 0 32 Mux busB 32 0 PC 32 Mux Mux Clk 32 Adder WrEn Adr 1 Clk 1 Data In Data Memory Extender imm16 PC Ext 32 16 imm16 Clk ExtOp ALUSrc A Single Cycle Datapath

  24. Ideal Instruction Memory Instruction Rd Rs Rt Imm 5 5 5 16 Instruction Address A Data Address 32 Rw Ra Rb 32 Ideal Data Memory 32 32 32-bit Registers ALU PC Next Address Data In B Clk Clk 32 Clk An Abstract View of the Critical Path • Register file and ideal memory: • The CLK input is a factor ONLY during write operation • During read operation, behave as combinational logic: • Address valid => Output valid after “access time.” Critical Path (Load Operation) = PC’s Clk-to-Q + Instruction Memory’s Access Time + Register File’s Access Time + ALU to Perform a 32-bit Add + Data Memory Access Time + Setup Time for Register File Write + Clock Skew

  25. Instruction<31:0> Inst Memory <21:25> <21:25> <16:20> <11:15> <0:15> Adr Op Fun Rt Rs Rd Imm16 Control ALUctr nPC_sel MemWr MemtoReg ALUSrc RegWr RegDst ExtOp Equal DATA PATH Given Datapath: RTL -> Control

  26. Inst Memory Adr nPC_sel 4 Adder 00 Mux PC Adder Clk imm16 PC Ext Meaning of the Control Signals 1 • Rs, Rt, Rd and Imed16 hardwired into datapath • nPC_sel: 0 => PC <– PC + 4; 1 => PC <– PC + 4 + SignExt(Im16) || 00

  27. RegDst ALUctr MemWr MemtoReg Equal Rt Rd 0 1 Rs Rt RegWr 5 5 5 busA = Rw Ra Rb busW 32 32 32-bit Registers 0 ALU 32 busB 32 0 32 Mux Mux Clk 32 WrEn Adr 1 1 Data In Data Memory imm16 32 Extender 16 Clk ExtOp ALUSrc Meaning of the Control Signals 2 MemWr: write memory MemtoReg: 1 => Mem RegDst: 0 => “rt”; 1 => “rd” RegWr: write dest register ExtOp: “zero”, “sign” ALUsrc: 0 => regB; 1 => immed ALUctr: “add”, “sub”, “or”

  28. Adder Mux Adder Example: Load Instruction Instruction<31:0> Inst Memory <0:15> <16:20> <11:15> <21:25> Adr Rs Rt Rd Imm16 RegDst nPC_sel ALUctr MemWr MemtoReg Rt Equal Rd rt add +4 0 1 Rs Rt 4 RegWr 5 5 5 busA Rw Ra Rb = 00 busW 32 32 32-bit Registers ALU 0 32 busB 32 0 PC 32 Mux Mux Clk 32 WrEn Adr 1 Clk 1 Data In Data Memory Extender imm16 PC Ext 32 16 imm16 Clk sign ext ExtOp ALUSrc

  29. PC ALU Clk An Abstract View of the Implementation Control Ideal Instruction Memory Control Signals • Logical vs. Physical Structure Conditions Instruction Rd Rs Rt 5 5 5 Instruction Address A Data Address Data Out 32 Rw Ra Rb 32 Ideal Data Memory 32 32 32-bit Registers Next Address Data In B Clk Clk 32 Datapath

  30. A Real MIPS Datapath (CNS T0)

  31. Inst Memory Instruction<31:0> Adr nPC_sel 4 00 Adder PC Mux Clk imm16 PC Ext Adder Instruction Fetch Unit at the Beginning of Add • Fetch the instruction from Instruction memory: • Instruction <- mem[PC] • This is the same for all instructions

  32. 31 26 21 16 11 6 0 op rs rt rd shamt funct Instruction<31:0> nPC_sel= +4 Instruction Fetch Unit Rd Rt <0:15> <21:25> <16:20> <11:15> Clk RegDst = 1 1 0 Mux ALUctr = Add Rt Rs Rd Imm16 Rs Rt RegWr = 1 5 5 5 MemtoReg = 0 busA Zero MemWr = 0 Rw Ra Rb busW 32 32 32-bit Registers 0 ALU 32 busB 32 0 Clk 32 Mux Mux 32 1 WrEn Adr 1 Data In 32 Data Memory Extender imm16 32 16 Clk ALUSrc = 0 ExtOp = x The Single Cycle Datapath during Add R[rd] <- R[rs] + R[rt]

  33. Inst Memory Instruction<31:0> Adr nPC_sel 4 Adder 00 Mux PC Adder Clk imm16 Instruction Fetch Unit at the End of Add • PC <- PC + 4 • This is the same for all instructions except: Branch and Jump

  34. 31 26 21 16 0 op rs rt immediate Instruction<31:0> nPC_sel = Instruction Fetch Unit Rd Rt <0:15> <21:25> <16:20> <11:15> Clk RegDst = 1 0 Mux Rt Rs Rd Imm16 Rs Rt ALUctr = RegWr = 5 5 5 MemtoReg = busA Zero MemWr = Rw Ra Rb busW 32 32 32-bit Registers 0 ALU 32 busB 32 0 Clk 32 Mux Mux 32 1 WrEn Adr 1 Data In 32 Data Memory Extender imm16 32 16 Clk ALUSrc = ExtOp = The Single Cycle Datapath during Or Immediate R[rt] <- R[rs] or ZeroExt[Imm16]

  35. 31 26 21 16 0 op rs rt immediate Instruction<31:0> nPC_sel= +4 Instruction Fetch Unit Rd Rt <0:15> <21:25> <16:20> <11:15> Clk RegDst = 0 1 0 Mux ALUctr = Add Rt Rs Rd Imm16 Rs Rt RegWr = 1 MemtoReg = 1 5 5 5 busA Zero MemWr = 0 Rw Ra Rb busW 32 32 32-bit Registers 0 ALU 32 busB 32 0 Clk 32 Mux Mux 1 WrEn Adr 1 Data In 32 Data Memory 32 imm16 Extender 32 16 Clk ALUSrc = 1 ExtOp = 1 The Single Cycle Datapath during Load R[rt] <- Data Memory {R[rs] + SignExt[imm16]}

  36. 31 26 21 16 0 op rs rt immediate Instruction<31:0> nPC_sel = Instruction Fetch Unit Rd Rt <0:15> <16:20> <11:15> <21:25> Clk RegDst = 1 0 Mux Rt Rs Rd Imm16 Rs Rt ALUctr = RegWr = 5 5 5 MemtoReg = busA Zero MemWr = Rw Ra Rb busW 32 32 32-bit Registers 0 ALU 32 busB 32 0 Clk 32 Mux Mux 32 1 WrEn Adr 1 Data In 32 Data Memory Extender imm16 32 16 Clk ALUSrc = ExtOp = The Single Cycle Datapath during Store Data Memory {R[rs] + SignExt[imm16]} <- R[rt]

  37. 31 26 21 16 0 op rs rt immediate Instruction<31:0> nPC_sel= +4 Instruction Fetch Unit Rd Rt <21:25> <16:20> <11:15> <0:15> Clk RegDst = x 1 0 Mux ALUctr = Add Rt Rs Rd Imm16 Rs Rt RegWr = 0 5 5 5 MemtoReg = x busA Zero MemWr = 1 Rw Ra Rb busW 32 32 32-bit Registers 0 ALU 32 busB 32 0 Clk 32 Mux Mux 32 1 WrEn Adr 1 32 Data In Data Memory Extender imm16 32 16 Clk ALUSrc = 1 ExtOp = 1 The Single Cycle Datapath during Store Data Memory {R[rs] + SignExt[imm16]} <- R[rt]

  38. 31 26 21 16 0 op rs rt immediate Instruction<31:0> nPC_sel= “Br” Instruction Fetch Unit Rd Rt <21:25> <16:20> <11:15> <0:15> Clk RegDst = x 1 0 Mux ALUctr = Subtract Rt Rs Rd Imm16 Rs Rt RegWr = 0 5 5 5 MemtoReg = x busA Zero MemWr = 0 Rw Ra Rb busW 32 32 32-bit Registers 0 ALU 32 busB 32 0 Clk Mux 32 Mux 32 1 WrEn Adr 1 Data In 32 Data Memory Extender imm16 32 16 Clk ALUSrc = 0 ExtOp = x The Single Cycle Datapath during Branch if (R[rs] - R[rt] == 0) then Zero <- 1 ; else Zero <- 0

  39. 31 26 21 16 0 op rs rt immediate Inst Memory Instruction<31:0> Adr nPC_sel 4 Adder 00 Mux PC Adder Clk imm16 Instruction Fetch Unit at the End of Branch if (Zero == 1) then PC = PC + 4 + SignExt[imm16]*4 else PC = PC + 4

  40. Instruction<31:0> Inst Memory <0:5> <21:25> <16:20> <0:15> <11:15> Adr Op Fun Rs Rt Rd Imm16 Control ALUctr nPC_sel MemWr MemtoReg ALUSrc RegWr RegDst ExtOp Equal DATA PATH Given Datapath: RTL -> Control

  41. A Summary of Control Signals inst Register Transfer ADD R[rd] <– R[rs] + R[rt]; PC <– PC + 4 ALUsrc = RegB, ALUctr = “add”, RegDst = rd, RegWr, nPC_sel = “+4” SUB R[rd] <– R[rs] – R[rt]; PC <– PC + 4 ALUsrc = RegB, ALUctr = “sub”, RegDst = rd, RegWr, nPC_sel = “+4” ORi R[rt] <– R[rs] + zero_ext(Imm16); PC <– PC + 4 ALUsrc = Im, Extop = “Z”, ALUctr = “or”, RegDst = rt, RegWr, nPC_sel = “+4” LOAD R[rt] <– MEM[ R[rs] + sign_ext(Imm16)]; PC <– PC + 4 ALUsrc = Im, Extop = “Sn”, ALUctr = “add”, MemtoReg, RegDst = rt, RegWr, nPC_sel = “+4” STORE MEM[ R[rs] + sign_ext(Imm16)] <– R[rs]; PC <– PC + 4 ALUsrc = Im, Extop = “Sn”, ALUctr = “add”, MemWr, nPC_sel = “+4” BEQ if ( R[rs] == R[rt] ) then PC <– PC + sign_ext(Imm16)] || 00 else PC <– PC + 4 nPC_sel = “Br”, ALUctr = “sub”

  42. See func 10 0000 10 0010 We Don’t Care :-) Appendix A op 00 0000 00 0000 00 1101 10 0011 10 1011 00 0100 00 0010 add sub ori lw sw beq jump RegDst 1 1 0 0 x x x ALUSrc 0 0 1 1 1 0 x MemtoReg 0 0 0 1 x x x RegWrite 1 1 1 1 0 0 0 MemWrite 0 0 0 0 1 0 0 nPCsel 0 0 0 0 0 1 0 Jump 0 0 0 0 0 0 1 ExtOp x x 0 1 1 x x ALUctr<2:0> Add Subtract Or Add Add xxx Subtract 31 26 21 16 11 6 0 R-type op rs rt rd shamt funct add, sub immediate I-type op rs rt ori, lw, sw, beq J-type op target address jump A Summary of the Control Signals

  43. op 00 0000 00 1101 10 0011 10 1011 00 0100 00 0010 R-type ori lw sw beq jump RegDst 1 0 0 x x x ALUSrc 0 1 1 1 0 x MemtoReg 0 0 1 x x x RegWrite 1 1 1 0 0 0 MemWrite 0 0 0 1 0 0 Branch 0 0 0 0 1 0 Jump 0 0 0 0 0 1 ExtOp x 0 1 1 x x ALUop<N:0> “R-type” Or Add Add xxx Subtract func ALUctr ALU Control (Local) op 6 Main Control 3 ALUop 6 N ALU The Concept of Local Decoding

  44. func ALU Control (Local) op 6 ALUctr Main Control ALUop 6 3 N R-type ori lw sw beq jump ALUop (Symbolic) “R-type” Or Add Add xxx Subtract ALUop<2:0> 1 00 0 10 0 00 0 00 xxx 0 01 The Encoding of ALUop In this exercise, ALUop has to be 2 bits wide to represent: (1) “R-type” instructions “I-type” instructions that require the ALU to perform: (2) Or, (3) Add, and (4) Subtract To implement the full MIPS ISA, ALUop has to be 3 bits to represent: (1) “R-type” instructions “I-type” instructions that require the ALU to perform: (2) Or, (3) Add, (4) Subtract, and (5) And (Example: andi)

  45. func ALU Control (Local) op 6 ALUctr Main Control ALUop 6 3 N R-type ori lw sw beq jump ALUop (Symbolic) “R-type” Or Add Add xxx Subtract ALUop<2:0> 1 00 0 10 0 00 0 00 xxx 0 01 31 26 21 16 11 6 0 R-type op rs rt rd shamt funct Recall ALU ( P. 286 text): funct<5:0> Instruction Operation ALUctr ALUctr<2:0> ALU Operation 10 0000 add 000 Add 10 0010 subtract 001 Subtract 10 0100 and 010 And ALU 10 0101 or 110 Or 10 1010 set-on-less-than 111 Set-on-less-than The Decoding of the “func” Field

  46. RegDst func ALUSrc ALUctr ALU Control (Local) op 6 Main Control : 3 6 ALUop 3 op 00 0000 00 1101 10 0011 10 1011 00 0100 00 0010 R-type ori lw sw beq jump RegDst 1 0 0 x x x ALUSrc 0 1 1 1 0 x MemtoReg 0 0 1 x x x RegWrite 1 1 1 0 0 0 MemWrite 0 0 0 1 0 0 Branch 0 0 0 0 1 0 Jump 0 0 0 0 0 1 ExtOp x 0 1 1 x x ALUop (Symbolic) “R-type” Or Add Add xxx Subtract ALUop <2> 1 0 0 0 x 0 ALUop <1> 0 1 0 0 x 0 ALUop <0> 0 0 0 0 x 1 The “Truth Table” for the Main Control

  47. . . . . . . op<5> op<5> op<5> op<5> op<5> op<5> . . . . . . <0> <0> <0> <0> <0> op<0> R-type ori lw sw beq jump RegWrite ALUSrc RegDst MemtoReg MemWrite Branch Jump ExtOp ALUop<2> ALUop<1> ALUop<0> PLA Implementation of the Main Control

  48. ALUop ALU Control ALUctr 3 RegDst func op 3 Main Control Instr<5:0> 6 ALUSrc 6 : Instr<31:26> Instruction<31:0> nPC_sel Instruction Fetch Unit Rd Rt <21:25> <16:20> <11:15> <0:15> Clk RegDst 1 0 Mux Rt Rs Rd Imm16 Rs Rt RegWr ALUctr 5 5 5 MemtoReg busA Zero MemWr Rw Ra Rb busW 32 32 32-bit Registers 0 ALU 32 busB 32 0 Clk Mux 32 Mux 32 1 WrEn Adr 1 Data In 32 Data Memory Extender imm16 32 16 Instr<15:0> Clk ALUSrc ExtOp Putting it All Together: A Single Cycle Processor

  49. Drawback of this Single Cycle Processor • Long cycle time: • Cycle time must be long enough for the load instruction: PC’s Clock -to-Q + Instruction Memory Access Time + Register File Access Time + ALU Delay (address calculation) + Data Memory Access Time + Register File Setup Time + Clock Skew • Cycle time for load is much longer than needed for all other instructions

  50. Processor Input Control Memory Datapath Output Summary • Single cycle datapath => CPI=1, CCT => long • 5 steps to design a processor • 1. Analyze instruction set => datapath requirements • 2. Select set of datapath components & establish clock methodology • 3. Assemble datapath meeting the requirements • 4. Analyze implementation of each instruction to determine setting of control points that effects the register transfer. • 5. Assemble the control logic • Control is the hard part • MIPS makes control easier • Instructions same size • Source registers always in same place • Immediates same size, location • Operations always on registers/immediates

More Related