100 likes | 231 Vues
This document discusses the implementation of combinational Inverse Fast Fourier Transform (IFFT) circuits using Bluespec. It covers the types and parameterization involved in designing these circuits, including the use of fixed-point arithmetic to optimize for area and power consumption. The two-level compilation process focuses on static elaboration, term rewriting systems, and compiler checks for type compatibility. Key implementation examples, like the 4-way Butterfly node function, highlight the coding strategies and polymorphic nature of operations within the Bluespec environment.
E N D
Combinational Circuits: IFFT, Types, Parameterization... Arvind Computer Science & Artificial Intelligence Lab Massachusetts Institute of Technology http://csg.csail.mit.edu/arvind
Now we call this Guarded Atomic Actions Bluespec: Two-Level Compilation Bluespec (Objects, Types, Higher-order functions) Lennart Augustsson @Sandburst 2000-2002 • Type checking • Massive partial evaluation and static elaboration Level 1 compilation Rules and Actions (Term Rewriting System) • Rule conflict analysis • Rule scheduling Level 2 synthesis James Hoe & Arvind @MIT 1997-2000 Object code (Verilog/C) http://csg.csail.mit.edu/arvind
elaborate w/params Software Toolflow: Hardware Toolflow: source source compile .exe design1 design2 design3 run w/ params run w/ params run1 run3 run1 run1.1 run1 run1 run2.1 run1 run1 run3.1 run1 run1 … … … … Static Elaboration At compile time • Inline function calls and datatypes • Instantiate modules with specific parameters • Resolve polymorphism/overloading http://csg.csail.mit.edu/arvind
+ + Bfly4 in0 out0 Bfly4 - - Bfly4 out1 in1 Bfly4 Permute_1 x16 out2 in2 Bfly4 Bfly4 Bfly4 Permute_2 Permute_3 in3 out3 + + … … out4 in4 Bfly4 Bfly4 … … * t0 in63 out63 - - * t1 * t2 *j * t3 Combinational IFFT All numbers are complex and represented as two sixteen bit quantities. Fixed-point arithmetic is used to reduce area, power, ... http://csg.csail.mit.edu/arvind
t0 t1 t2 t3 + + k0 k1 k2 k3 - - + + * - - * * *i * 4-way Butterfly Node function Vector#(4,Complex) Bfly4 (Vector#(4,Complex) t, Vector#(4,Complex) k); • BSV has a very strong notion of types • Every expression has a type. Either it is declared by the user or automatically deduced by the compiler • The compiler verifies that the type declarations are compatible http://csg.csail.mit.edu/arvind
+ + - - + + m z y * - - * * *i * BSV code: 4-way Butterfly function Vector#(4,Complex) Bfly4 (Vector#(4,Complex) t, Vector#(4,Complex) k); Vector#(4,Complex) m = newVector(), y = newVector(), z = newVector(); m[0] = k[0] * t[0]; m[1] = k[1] * t[1]; m[2] = k[2] * t[2]; m[3] = k[3] * t[3]; y[0] = m[0] + m[2]; y[1] = m[0] – m[2]; y[2] = m[1] + m[3]; y[3] = i*(m[1] – m[3]); z[0] = y[0] + y[2]; z[1] = y[1] + y[3]; z[2] = y[0] – y[2]; z[3] = y[1] – y[3]; return(z); endfunction Polymorphic code: works on any type of numbers for which *, + and - have been defined Note: Vector does not mean storage http://csg.csail.mit.edu/arvind
Bfly4 in0 out0 Bfly4 Bfly4 in1 out1 Bfly4 Permute_1 x16 in2 out2 Bfly4 Bfly4 Bfly4 Permute_3 Permute_2 in3 out3 … … in4 out4 Bfly4 Bfly4 … … in63 out63 Combinational IFFT stage_f function repeat it three times http://csg.csail.mit.edu/arvind
BSV Code: Combinational IFFT function Vector#(64, Complex) ifft (Vector#(64, Complex) in_data); //Declare vectors Vector#(4,Vector#(64, Complex)) stage_data = replicate(newVector); stage_data[0] = in_data; for (Integer stage = 0; stage < 3; stage = stage + 1) stage_data[stage+1] = stage_f(stage,stage_data[stage]); return(stage_data[3]); The for loop is unfolded and stage_f is inlined during static elaboration Note: no notion of loops or procedures during execution http://csg.csail.mit.edu/arvind
BSV Code: Combinational IFFT- Unfolded function Vector#(64, Complex) ifft (Vector#(64, Complex) in_data); //Declare vectors Vector#(4,Vector#(64, Complex)) stage_data = replicate(newVector); stage_data[0] = in_data; for (Integer stage = 0; stage < 3; stage = stage + 1) stage_data[stage+1] = stage_f(stage,stage_data[stage]); return(stage_data[3]); stage_data[1] = stage_f(0,stage_data[0]); stage_data[2] = stage_f(1,stage_data[1]); stage_data[3] = stage_f(2,stage_data[2]); Stage_f can be inlined now; it could have been inlined before loop unfolding also. Does the order matter? http://csg.csail.mit.edu/arvind
Bluespec Code for stage_f function Vector#(64, Complex) stage_f (Bit#(2) stage, Vector#(64, Complex) stage_in); begin for (Integer i = 0; i < 16; i = i + 1) begin Integer idx = i * 4; let twid = getTwiddle(stage, fromInteger(i)); let y = bfly4(twid, stage_in[idx:idx+3]); stage_temp[idx] = y[0]; stage_temp[idx+1] = y[1]; stage_temp[idx+2] = y[2]; stage_temp[idx+3] = y[3]; end //Permutation for (Integer i = 0; i < 64; i = i + 1) stage_out[i] = stage_temp[permute[i]]; end return(stage_out); http://csg.csail.mit.edu/arvind