Download
slide1 n.
Skip this Video
Loading SlideShow in 5 Seconds..
BAB III LIMIT FUNGSI DAN KEKONTINUAN PowerPoint Presentation
Download Presentation
BAB III LIMIT FUNGSI DAN KEKONTINUAN

BAB III LIMIT FUNGSI DAN KEKONTINUAN

357 Vues Download Presentation
Télécharger la présentation

BAB III LIMIT FUNGSI DAN KEKONTINUAN

- - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - -
Presentation Transcript

  1. BAB III LIMIT FUNGSI DAN KEKONTINUAN

  2. 3.1 Pendahuluan Sebelummambahas limit fungsidisuatutitik, terlebihdahulu kitaakanmengamatiperilakusuatufungsi f bilapeubahnya mendekatisuatubilanganril c tertentu. • Misalterdapatsuatufungsi f(x) = x + 4. • Untukmenentukanharga f bila x mendekatibilanganril • tertentu, misal 2, kitadapatmengamatinyadenganbantuan • tabeldanGambar 3.1

  3. y 0,0001 6,0001 6 5,9999 0,0001 x O 2 0,0001 0,0001 2,0001 1,9999 Gambar 4.1

  4. Dari TabelatauGambar 3.1 dapatdilihatbahawauntuk x mendekati 2 (baikdariarahkirimulaidari 1,9 maupundari arahkananmulaidari 2,1) didapatharga f yang mendekati 6. Sedangkanuntuk x = 2 harga f adalah 6. • Selanjutnyacobaperhatikanfungsi x lainnyayaitu, (x2+ 1)(x+ 3) x3 + 3x2 + x+ 3 Jikafungsipembilangkitafaktorkan, didapat f(x) = atau f(x) = x2 + 1 untuk x  3 f(x) = x+ 3 x+ 3 Artinya f(x) = x2 +1 takterdefinisiuntuk x = –3. Untuk mengamatiperilakufungsidisekitartitik x = –3 berikut perhatikanTabeldanGrafikfungsi f(x) = x2 +1 untuk x –3 (Gambar 4.2).

  5. y 10,00060001 9,99940001 x –3 0 0,0001 0,0001 • – 2,9999 • – 3,0001 Gambar 4.2

  6. JikakitaperhatikanTabeldanGambardiatasmakakitadapat melihatbahwauntukharga x mendekati –3 makaharga f(x) mendekati 5. Dari uraiandiatasdapatdisimpulkanbahwa: • Jikasebuahfungsiterdefinisipadasuatuselangterbuka yang • memuatbilanganril c tertentu, kecualimungkindititik c itu • sendiri, dan • bila f(x) mendekatibilanganril L tertentupadasaat x • mendekati c, makadapatditulis, f(x) = L (4.1) lim xc dibaca “ limit f(x) adalah L bila x mendekati c” atau “f(x) • mendekati L bila x mendekati c”

  7. y L +   f(x) f(x) - L L f(x) - L  f(x) L -  x c - x c x c +  0 c-x x-c  

  8. Untuk x < c , maka : 0 < c – x < atau 0 > x – c > - Untuk x > c , maka : 0 < c – x <  Dari keduapersamaandiatas, didapat 0<|x – c |< (4.2) Untuk f(x) < L, maka L – f(x) < atau f(x) – L > - Untuk f(x) > L, maka f(x) – L <  Sehinggadidapat |f(x) – L | <  (4.3) Dari Gambar 4.3 danpersamaan 4.1 s/d 4.3 makadidapatdefinisi sebagaiberikut, lim f(x) = L xc Pernyataan , berartiuntuksetiap > 0 terdapat >0 sedemikianrupa , sehinggajika 0 <|x – c|< , maka |f(x) – L |<  (4.4)

  9. 4.3 Limit fungsi Untukmenyederhanakanpermasalahan, berikutdiberikan rumus-rumuspenyelesaian limit yang didapatdengan bantuandefinisi limit. Padarumus-rumusini b, c, k dan L adalahbilangan-bilanganril, a bilanganrilpositif, sedangkan m dan n adalahbilanganrilpositif. • Teorema-teorema 1. x = c (4.5) lim Bukti : Untuksetiap > 0 makaterdapat > 0 sedemikian rupasehingga, jika 0 < |x – c| < , makaterdapat • |x – c| <  xc Jadiuntuk =  didapat |x – c| < 

  10. Contoh 4.1 Bukti : Untuksetiap > 0 makaterdapat > 0 sedemikianrupa sehingga, • jika 0 <| x – c| < , mak a terdapat |k – k| < . • Karena |k – k | = 0, makadefinisiterpenuhi x = 5 k = k = c (4.6) x = –7 a. b. 2. lim lim lim x5 x–7 xc

  11. Contoh 4.1 lim lim xc xc lim lim Bukti xc xc 4 = 4 [f(x) + g(x)] = f(x) + g(x) (4.7) 9 = 9 3. b. a. lim lim lim Dari definisi, untuksetiap > 0 terdapat > 0 sedemikian rupasehingga, • Jika 0<|x – c|<, maka |(f(x) + g(x) – (L1 + L2)|<  • atau • |((f(x) – L 1) + (g(x) – L2))| <  dan g(x) = L2 f(x) = L1 xc x2 x–3

  12. Dari ketidaksamaansegitigadidapat, 1 1 1 2 2 2 |((f(x) – L 1) + (g(x) – L2))|  |f(x) – L1|+|g(x) – L2| atau |((f(x) + g(x)) – (L 1 + L2))|  | f(x) – L1|+|g(x) – L2| Karena f(x) = L1 , makauntuksetiap>0 terdapat 1>0 sedemikianrupa, sehingga lim lim xc xc Selanjutnya, karena g(x) = L2 , makauntuksetiap 1  > 0terdapat2>0 sedemikianrupa, sehingga 2 jika 0 < | x – c| < 1maka |f(x) – L1 <  (*) jika 0 < |x – c|< 2, maka |f(x) – L 2| <  (**)

  13. Dari ketidaksamaansegitigadidapat, 1 1 |(f(x) – L1)+(g(x) – L2|  |f(x) – L1|+|g(x) – L2| atau 2 2 |(f(x) + g(x) –(L1+ L2))| |f(x) – L1|+|g(x) – L2| (**) Dari (*), (**), dan (***) didapat, |(f(x) + g(x) –(L1+ L2))| <  +  atau lim lim xc xc |(f(x) + g(x) –(L1+ L2))| <  (terbukti) Contoh 4.3 [f(x) – g(x)] = f(x) – g(x) (4.8) 4. lim lim lim lim (x+6) = x + 6 = 5 + 6 = 11 xc x5 x5 x5 Bukti, ikutipembuktianteorema 3

  14. Bukti lim lim dan Misal xc xc Dari ketidaksamaansegitigadidapat, Contoh 4.4 g(x) = L2 f(x) = L1 [f(x) . g(x)] = f(x) . g(x) (4.9) 5. lim lim lim lim lim lim |f(x) . g(x) – L1L2| = |f(x) . g(x) – L2f(x) + L2f(x) – L1L2|  |f(x)||g(x) – L2f(x)| + |L2||f(x) – L1|  |f(x)||g(x) – L2f(x)| + (1+ |L2|)|f(x) – L1| (i) (7 –x) = 7 – x = 7 – 5 = 2 x5 x5 xc x5 xc xc

  15. Untuksetiap1 > 0 terdapat 1 > 0 sedemikianrupa , sehingga jika 0 < |x – c| < 1, maka |f(x) – L1| < 1 (ii) Dari ketidaksamaansegitigadidapat , |f(x) – L1|  |f(x) – |L1| (iii) Dari (ii) dan (iii) didapat |f(x)| – |L1| < 1atau |f(x)| < |L1| +1 (iv) Denganmengambilnilai 1 = 1, maka |f(x)| < |L1| +1 (v) Untuksetiap2 > 0 terdapat 2 > 0 sedemikianrupa , sehingga jika 0 < |x – c| < 2, maka |f(x) – L2| < 2 (vi)

  16. Denganmengambilnilai 2 = , makadari (vi) didapat, |g(x) – L2| < (vii) Untuksetiap21> 0 terdapat 1 > 0 sedemikianrupa , sehingga , jika 0 < |x – c| < 3, maka |f(x) – L1| < 3 (vii) ½  ½  ½  ½  Denganmengambilnilai 3 = , makadari (vii) 1 + |L1| 1 + |L2| 1 + |L1| 1 + |L1| didapat, |g(x) |– |L1| < (ix)

  17. Selanjutnyadaripersamaan (i), (v), (vii), dan (ix) didapat, Denganmemilih = min(1, 2, 3 ) akandidapatpernyataan, jika 0 < |x – c| < , maka |f(x) – L1| <  (terbukti) ½  ½  Contoh 4.5 1 + |L1| 1 + |L2| lim lim x5 x5 (7 – x)(x + 1) = (7 – x) . (x + 1) lim x5 (7 – 5)(5 + 1) = (2)(6) = 12 |f(x) – L1L2| < (1+|L1|) + (1+|L2|) = 

  18. – = , g(x)  0 (i) |g(x) – L2| f(x) f(x) |g(x)||L2| g(x) g(x) Bukti lim lim f(x) 6. = (4.10) xc xc f(x) . f(x) = = g(x) 1 1 1 1 g(x) g(x) g(x) g(x) Misal f(x) = L1dan = lim lim lim lim lim lim lim xc xc xc xc xc xc xc 1 1 Untuk1 > 0 terdapat 1 > 0 sedemikianrupa, sehingga, L2 L2 jika 0 < |x – c| < 1, maka |g(x) – L2| <1 (ii)

  19. Dari ketidaksamaansegitiga, |g(x) – L2| = | L2– g(x)|  |L2|– |g(x)| (iii) Jadi | L2 – g(x)| <1  |g(x)| >|L2|–1 (iv) Denganmenentukannilai1 = , maka 2 |L2|2 1 1 |L2| |L2| |L2| |g(x)| > |L2| – = g(x) |g(x)| 2 2 2 2 Sehingga < (v) |L2| 1 Selanjutnyadari (i) dan (v) didapat , L2 –  |g(x) – L2| (vi)

  20. Untuk1 > 0 terdapat 2sedemikianrupa, sehingga jika 0 < |x – c|<2, maka |g(x) – L2| < 2 (vii) Denganmenentukannilai1 = , makapersamaan (vii) menjadi, 2 |L2|2 1 1 g(x) g(x) Dari persamaan (i), (v), dan (viii) didapat |g(x) – L2| < (viii) |L2|2 |L2|2 |L2|2 2 2 2 1 1 Denganmemilih = min(1, 2) akandidapatpernyataan, L2 L2 –  = 1 (ix) jika 0 < |x – c| < , maka– < .

  21. Hal inimembuktikanbahwa x f(x) = = 3 – x g(x) L1 lim lim lim lim f(x) L2 xc x–4 x–4 xc g(x) 1 1 Contoh 4.6 g(x) g(x) x f(x) (4.11) [af(x)] = a lim lim lim lim lim lim lim Jadi = f(x) = = (terbukti) xc xc xc xc x–4 xc xc = = = 1 3 – x 1 g(x) L2 –4 –4 3 – (–4) 7 7. Bukti, lihatpersamaan (4.6) dan (4.9)

  22. Contoh 4.7 a. 9x = 9 x = 9e b. 3(4 – x) = 3 (4 – x) = 3(4 –) n f(x) lim 8. xc Bukti [f(x)]n = [f(x)].[f(x)]. … . [f(x)] denganjumlahfaktor f(x) adalah n [f(x)]n = [f(x)]n = [f(x)]n = lim lim lim lim lim lim lim lim lim lim lim xc xe xe xc x xc xc xc xc x xc [f(x).f(x). … . f(x)] f(x). … . f(x) f(x) . Dari persamaan 4.9 didapat,

  23. Dari persamaan 4.9 didapat, = n Contoh 4.8 7 (x – 3)7 = (x – 3) = (2 – 3) = –1 [f(x)]n = lim lim lim lim lim lim lim x2 xc xc xc x2 xc xc [f(x)] (terbukti) f(x) f(x). … . f(x) .

  24. 9. Teorema Sandwich ( teoremaapit ) Misalterdapat f(x)  h(x)  g(x) untuksetiapharga x pada suatuselangterbuka yang mengandung c, kecualimungkin dititik c itusendiri. Jika f(x) = L = g(x), Bukti : Untuksetiap > 0 terdapat1>0 dan 2>0 sedemikian rupasehingga, maka h(x) = L (4.13) Jika 0 < |x – c| < 1 , maka | f(x) – L| <  Jika 0 < |x – c| < 2 , maka | g(x) – L| <  (*) Untuk = min(1,2) dan 0< |x – c| <, makaketidaksamaan (*) menjadi , –  < f(x) – L < dan–  < g(x) – L < 

  25. Sehingga 0 < |x – c| <  L – < f(x) dan g(x) < L +  Karena f(x)  h(x)  g(x), sehinggajika 0 < |x – c| < , maka L –  < h(x) < L +  atau |h(x) – L | <  (terbukti) Contoh 4.9 Penyelesaian: (kalikansemuasukudengan x2)

  26. 10. Limit sepihak (4.14) Contoh 4.10 Penyelesaian

  27. Karena limit kiri = limit kanan = 5, maka 4.4 Limit fungsitrigonometri Bukti PerhatikanGambar 4.4 berikut!

  28. y T Q r  x 0 P Gambar 4.4

  29. LuasOPQ < Sektor OPQ < OPT (*) (**) (***) (****) Substitusipersamaan (**) s/d (****) kepersamaan (*) didapat, Gunakanteoremaapit!

  30. (4.16) (4.17) (4.18) Bukti (terbukti) (4.19) Bukti

  31. Bukti Bukti

  32. Bukti Bukti

  33. 3.5 Limit fungsitrigonometriinvers (4.22) Bukti (4.22) Bukti

  34. (4.22) Bukti

  35. (4.24) Bukti (4.25) Bukti

  36. (4.26) Bukti (4.27) Bukti

  37. 3.6 Limit takhingga Jikakitalakukanpengamatanterhadap mungkinakandidapatbahwa f(x) membesarataumengecil tanpabatas. SebagaiilustrasidapatdilihatpadaGambar 4.5 berikut. y x 0 2 Gambar 4.5

  38. Dari tabeldiatasdapatdilihatbahwapadasaat x mendekati titik 2 dariarahkananmaka f(x) membesartanpabatas (menuju). • Sedangkanpadasaat x mendekati 2 dariarahkirimaka f(x) • mengeciltanpabatas (menuju –). Selanjutnyadikatakan • bahwa limit f(x) untuk x mendekati 2 dariarahkanan • adalah atau Sedangkan limit f(x) untuk x mendekati 2 dariarahkiriadalah – Karena limit kiri limit kanan, makatidakada (lihatpersamaan 4.14)

  39. Untukmemecahkan limit takhinggaperhatikanteoremaberikut! Bukti

  40. Jikasemuasukudibagidenganxmmaka, Jika m < n, maka Jadi Jika m = n, maka

  41. Jika m > n, maka Contoh 4.11 Penyelesaian

  42. 4.7 Asimtot Dalammenganalisasuatufungsikitaseringmemerlukannilai atauhargafungsitersebutadajaraktakhinggadarititik nol. • Jikakurvasuatufungsimendekatiperilakugarislurus, • makagarislurustersebutadalahasimtotdarikurva. 4.7.1 Asimtottegak Jikajaraksuatukurvaterhadapsuatugarisvertikal mendekatinol, makagaristegaklurustersebutadalah asimtottegakdarikurva. Contohasimtottegakdapat dilihatpadaGambar 4.6 berikut. Asimtottegaksuatu kurvadapatditentukansebagaiberikut.

  43. y x 0 Gambar 4.6

  44. atau adalahasimtottegakkurva f(x) 4.7.2 Asimtotdatar Jikajaraksuatukurvaterhadapsuatugarisdatarmendekati nol, makagaristersebutadalahasimtotdatardarikurva. ContohdariasimtotdatardapatsilihatpadaGambar 4.7 berikut.

  45. y y = a x 0 Gambar 4.7 kurva f(x).

  46. 4.7.3 Asimtot miring Jikajaraksuatukurvaterhadapsuatugaris miring mendekati nol, makagaristersebutadalahasimtot miring darikurva. Contohdariasimtot miring dapatsilihatpadaGambar 4.8 y y=ax+b x 0 Gambar 4.8

  47. garis y = ax + b adalahasimtot miring darikurva f(x). Jika a = 0 makatidakterdapatasimtot miring. Contoh 4.12 Penyelesaian makagaris x = –4 adalahasimtottegak makagaris y = 0 adalahasimtotdatar Karena a = 0, makagrafiktidakmempunyaiasimtot miring

  48. y x = –4 x 0 Gambar 4.9