180 likes | 363 Vues
Chapter section 8.1.1 Topic: quadratic equations Vocabulary:. Generic rectangle – is a distribution box that is filled in. Neg times Neg is Pos Pos times Neg is Neg. Example One. Instructions: Simplify. Distribution Boxes. a. -3. 2a. 2a². -6a. +6. +6a. -18. Example Two.
E N D
Chapter section 8.1.1Topic: quadratic equations Vocabulary: • Generic rectangle – is a distribution box that is filled in. • Neg times Neg is Pos Pos times Neg is Neg
Example One Instructions: Simplify Distribution Boxes a -3 2a 2a² -6a +6 +6a -18
Example Two Instructions:Solve the generic rectangle puzzle +a +5 +a +7 +a² +5a +a² +7a +a +a +6a +30 +4a +28 +6 +4 +a +3 +a +9 +a² +3a +a² +9a +a +a +a +3 -2a -18 +1 -2
Classwork One Instructions:Solve the generic rectangle puzzle +a +3 +a +1 +a² +3a +a² +a +a +a +2a +6 +5a +5 +2 +5 +a +7 +a +4 +a² +7a +a² +4a +a +a +9a +63 -6a -24 +9 -6
Example Three Instructions:Solve the generic rectangle puzzle +a -6 +a +7 -a² +6a +a² +7a -a +a +6a -36 +4a +28 +6 +4 +a -4 +a +5 +a² -4a -a² -5a +a -a -2a +8 -2a -10 -2 -2
Classwork Two. Instructions:Solve the generic rectangle puzzle +a +4 +a -3 +a² +4a +a² -3a +a +a +8a +32 +3a -9 +8 +3 +a -6 -a -2 -a² +6a +a² +2a -a -a -3a +18 -9a -18 -3 +9
Example Four Instructions:Solve the generic rectangle puzzle +a +4 +a +5 +2a² +8a +3a² +15a +2a +3a +7a +28 +7a +35 +7 +7 +2a +3 +2a -3 +2a² +3a -4a² +6a +a -2a +4a +6 -12a +18 +2 -6
Classwork Three Instructions:Solve the generic rectangle puzzle +a +5 +3a +8 +3a² +15a +3a² +8a +3a +a +4a +20 +6a +16 +4 +2 +2a +4 +3a +3 +6a² +12a 9a² +9a +3a +3a +8a +16 +12a +12 +4 +4
Example Five Instructions:Solve the generic rectangle puzzle -a +6 -2a +6 -2a² +12a -6a² +18a +2a +3a +7a -42 +10a -30 -7 -5 -2a -4 -2a +8 -2a² -4a -6a² +24a +a +3a +6a +12 -4a +16 -3 +2
Classwork Four Instructions:Solve the generic rectangle puzzle -a +1 -2a +1 -2a² +2a -6a² +3a +2a +3a +3a -3 +2a -1 -3 -1 -2a -5 -a +1 -2a² -5a -3a² +3a +a +3a +10a +25 -4a +4 -5 +4
Example Six Instructions:Test the generic rectangle puzzle (+2)(a)(+2)(a) = 4a² -2a² +2a +2a -2 (-2)(a²)(-2) = 4a² (+10)(a)(-5)(a) = -50a² -2a² -5a +10a +25 (-2)(a²)(+25) = -50a²
Classwork Five Instructions:Test the generic rectangle puzzle +3a² +15a +3a² +9a +60a² +54a² +4a +20 +6a +18 +6a² +12a 9a² +9a +108a² +72a² +6a +12 +12a +12
Chapter section 8.1.1Topic: quadratic equations Vocabulary: So either a+1 is zero or a+2 is zero or
Example One Instructions: Factor the quadratic. -1 -1 +6 +6 test 1 x -6 1 - 6 -1 x 6 6 - 1
Classwork Four Instructions: Factor the quadratic. 1 and -8 10 and -4 -3 and -5 -4 and -4
Example Two: Has two answers: or • Instructions: Solve If (a+6) is zero If (a-1) is zero -6 -6 +1 +1
Example Three Instructions: Solve the quadratic. +2 +2 -8 -8 test -2 x 8 8 - 2 2 x -8 2 - 8 -2 -2 +8 +8
Classwork Four Instructions: Solve the quadratic. -3 and -6 -2 and 7 2 and -9 2 and -8